INTRODUCTION OF ALGEBRA TO PRIMARY EDUCATION THROUGH THE USE OF DIGITAL TOOLS: STUDY OF TEACHING DESIGN AND PRACTICE OF PRACTICE


Published: Jun 14, 2021
Keywords:
Early algebra Documentational Approach to Didactics digital resources operational invariants teacher professional development eXpresser
Σωτήριος Κατσομήτρος (Sotirios Katsomitros)
Γεώργιος Ψυχάρης (Giorgios Psycharis)
Abstract

In this paper we study the didactical design and practice of a primary school teacher (i.e. Eleni) through the use of the Documentational Approach to Didactics. The study took place in the context of the PREMaTT project focusing on the collaborative design of resources of a group of primary and secondary teachers for the teaching of algebra in their classrooms through the process of design-implementation–reflection. At the same time, the discussions of the professional development meetings of the group were analysed in order to identify possible influences on Eleni’s design and practice as well as indications of her professional learning. The analysis revealed that the main issues emerging in these meetings, such as the notion of variable and its introduction in classroom teaching, influenced Eleni’s documentational work inside and outside the classroom and brought to the fore the complexity of issues involved in the teaching and learning of algebra through the use of digital technologies. The results also revealed indications of Eleni’s professional learning in relation to the teaching and learning of algebra in the primary education.   

Article Details
  • Section
  • Young Researchers
Downloads
Download data is not yet available.
Author Biographies
Σωτήριος Κατσομήτρος (Sotirios Katsomitros), NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

Post graduate student

Γεώργιος Ψυχάρης (Giorgios Psycharis), NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

Associate Professor

References
Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3(3), 205-224.
Blanton, M. L., & Kaput, J. J. (2004). Elementary Grades Students' Capacity for Functional Thinking. International Group For The Psychology Of Mathematics Education.
Blanton, M. L., & Kaput, J. J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for research in mathematics education, 412-446.
Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In Early algebraization (pp. 5-23). Springer, Berlin, Heidelberg.
Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40(1), 3-22.
Ζούπα, Α. & Ψυχάρης, Γ. (2015). Νοηματοδότηση της μαθηματικής γενίκευσης ως αλγεβρικής δραστηριότητας. Στο Δ. Δεσλή, Ι. Παπαδόπουλος & Μ.Τζεκάκη (επιμ.). Πρακτικά του 6ου Πανελλήνιου Συνεδρίου της ΕΝ.Ε.ΔΙ.Μ. Θεσσαλονίκη: ΕΝΕΔΙΜ
Ferrara, F., & Sinclair, N. (2016). An early algebra approach to pattern generalisation: Actualising the virtual through words, gestures and toilet paper. Educational Studies in Mathematics, 92(1), 1-19.
Geraniou, E., & Mavrikis, M. (2015). Building Bridges to Algebra through a Constructionist Learning Environment. Constructivist Foundations, 10(3), 321-330.
Gueudet, G., Pepin, B., & Trouche, L. (2013). Collective work with resources: an essential dimension for teacher documentation. ZDM, 45(7), 1003-1016.
Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers?. Educational Studies in Mathematics, 71(3), 199-218.
Gueudet, G., & Trouche, L. (2011). Mathematics teacher education advanced methods: an example in dynamic geometry. ZDM, 43(3), 399-411.
Irwin, K. C., & Britt, M. S. (2005). The algebraic nature of students’ numerical manipulation in the New Zealand Numeracy Project. Educational Studies in Mathematics, 58(2), 169-188.
Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early algebra: Research into its nature, its learning, its teaching. Springer.
Kynigos, C., Bardini, C., Barzel, B., & Maschietto, M. (2007). Tools and technologies in mathematical didactics. In Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 1332-1338).
Παιδαγωγικό Ινστιτούτο, (2011). Μαθηματικά στην πρωτοβάθμια εκπαίδευση: Οδηγός για τον εκπαιδευτικό «Εργαλεία Διδακτικών Προσεγγίσεων». Αθήνα: Παιδαγωγικό Ινστιτούτο
Psycharis, G., & Kalogeria, E. (2018). Studying the process of becoming a teacher educator in technology-enhanced mathematics. Journal of Mathematics Teacher Education, 21(6), 631-660.
Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1-19.
Radford, L. (2011). Grade 2 students’ non-symbolic algebraic thinking. In Early algebraization (pp. 303-322). Springer, Berlin, Heidelberg.
Rivera, F. D. (2013). Teaching and learning patterns in school mathematics. New York, NY.
Σκουρμπουδή, Χ. (2014). Μοτίβα στην καθημερινότητα και στο νηπιαγωγείο. Πρακτικά του 5ου Πανελλήνιου Συνεδρίου της ΕΝ.Ε.ΔΙ.Μ. Φλώρινα: ΕΝΕΔΙΜ
Strauss, A., & Corbin, J. M. (1997). Grounded theory in practice. Sage.
Warren, E., & Cooper, T. J. (2008). Patterns that support early algebraic thinking in the elementary school. In Algebra and algebraic thinking in school mathematics (pp. 113-126). National Council of Teachers of Mathematics.
Wenger, E. (1999). Communities of practice: Learning, meaning, and identity. Cambridge university press.
Yin, R. K. (1994). Discovering the future of the case study. Method in evaluation research. Evaluation practice, 15(3), 283-290.
Ψυχάρης, Γ. & Φακούδης, Β. (2014). Ανάπτυξη μονάδων διδασκαλίας με ψηφιακά εργαλεία για τα μαθηματικά σε διαδοχικούς κύκλους σχεδιασμού-εφαρμογής-συζήτησης. Πρακτικά του 5ου Πανελλήνιου Συνεδρίου της ΕΝ.Ε.ΔΙ.Μ. Φλώρινα: ΕΝΕΔΙΜ