Epidemiological models


Α. Μακρόγλου
Σ. Κουιμτζής
Abstract

In this paper are described some epidemiological models which govern the spread of infectius diseases. These models are deterministic, and have the form of integral and integrodifferential equations. Solving these equations it is possible to predict the inumber of the confected members of a population at time t>0 if it Is known at time t=0.

Article Details
  • Section
  • Articles
Downloads
Download data is not yet available.
References
Anderson, R.M. and May, R.M.: Population biology of infectious deseases I, Nature 280, 361 -367 (1979).
Diekmann O. : Integral equations and population dynamics, p. 117-149 in: Colloquium Numerical treatment of integral equations, Ed. H.J.J, te Riele, Mathematisch Centrum, Amsterdam (1979).
Diekmann O.: Thresholds and travelling waves for the geographical spead of infection, J. Math. Biol. 6,109-130 (1978).
Diekmann, O.: On a nonlinear integral equation arising in Mathematical Epidemiology, in: Differential Equations and Applications (W. Eckhaus, E.M. de Jager" Eds), 133-140, North - Holland, Amsterdam, (1978).
Diekmann O.: Run for your life. A note on the asymptotic speed of propagation of an epidemic. To appear in J. Diff. Equ.
Diekmann, O.: A nonlinear integral equation describing the geographical spread of infection: the hair - trigger effect, travelling waves and the asymptotic speed of propagation, Report III, 1 o n '-•i+••*- ««•- le Applicazioni del Calcolo « Mauro Picone », Roma, (1978).
Hethcote, H.W., Stech H.W. and Driessche, P. van der: Periodicity and stability in epidemic models: A survey, in: Differential equations and Applications in Ecology, Epidemics and Population problems, (Busenborg S. and Cooke K.L. Eds), Academic Press, 1981.
Hoppensteadt F.: Mathematical theories of Populations: Demographics, Genetics and Epidemics. SIAM Regional
Conference Series in Applied Math., 20, SIAM, Philadelphia, (1975).
Hoppensteadt F. and Waltman P.: A problem in the theory of epidemics. I. II, Math. Biosci. 9, 71-91: 133-145 (197Û-1971).
Kermack W. O. and McKendrick A.G.: Proc. Roy. Soc. A. 115, p. 700-721: 138, p. 55-83: 141, p. 94-122 (1927, 1932, 1933).
Makroglou Α.: A block - by – block method for the numerical solution of Volterra delay integro - differential equations, Computing, 30, p. 49-62 (1983).
May, R. M. and Anderson, R.M.: Population biology of infectious diseases II, Nature 280, p. 455 - 461 (1979).
Mollison D.: Spatial contact models for ecological and epidemic spread, J. Roy. Statist. Soc. B, 39, p. 283-326 (1977).
Soper, Η. E.: Interpretation of periodicity in disease prevalence, J. Roy. Statist. Soc. B, 92, p. 34-73 (1929).
Wilson, L. O. and Burke, Μ. H.: The epidemic curve, Proc. Nat. Acad. Sci., 28, p. 361-366 (1924).
Most read articles by the same author(s)