test Identification of polymorphisms in ELF5 and BMP2 genes and their impact on milk production in Brown Swiss cattle|Journal of the Hellenic Veterinary Medical Society

Identification of polymorphisms in ELF5 and BMP2 genes and their impact on milk production in Brown Swiss cattle


Veröffentlicht: нояб. 6, 2025
Z Sönmez
M Özdemir
Abstract

Identifying new genetic markers to comprehend the population structure and genetic foundation of cattle breeds, enhancing production and elevating yield quality, is vital in the realm of modern breeding technology. The aim of this study was to determine the genetic variations in E74-Like Factor 5 (ELF5), also known as Epithelial Specific ETS Factor 5, and Bone Morphogenetic Protein 2 (BMP2), also known as Bone Mineral Density Protein 2, and to correlate them with milk yield.es. The study’s purpose was to define new genetic markers in genes affecting milk yield performances in cattle. We used DNA samples from 90 animals of Brown Swiss cattle. Sequence analyses were applied to samples randomly selected after High-Resolution Melting analysis (HRMA), and polymorphic regions were identified. As a result of DNA sequences i) g.65825499 G/A transitions were determined for the intron 2 region of the ELF5 gene, ii) 5 different polymorphic regionsg.65826062 G/A, g.65825909 T/C, g.65826134 C/T, g.65826123 A/C and g. 65826138 T/C were identified for the exon 5 region of the ELF5 gene; iii) g.49551405 G/T, g.49551337 G/A, g.49551433 A/C, g.49551428 G/C and g.49551449 T/G polymorphic regions were identified for the exon 3 region of the Morphogenetic Protein 2 (BMP2) gene. There was no relationship between the polymorphic regions in the exon 5 and the intron 2 region of ELF5 and BMP2 gene polymorphic SNP polymorphisms and milk yield (P>0.05). Our results suggest that the newly identified polymorphisms in these genes can be used as molecular markers in modern breeding for defining various traits such as milk and growth yields.


Keywords: ELF5, BMP2, SNP, milk yield, DNA sequencing.

Article Details
  • Rubrik
  • Research Articles
Downloads
Keine Nutzungsdaten vorhanden.
Literaturhinweise
Attisano, L. and J.L. Wrana. (2002). Signal transduction by the TGF-β
superfamily. Science 296(5573): 1646-1647.
Baazaoui, I., S. Bedhiaf-Romdhani, S. Mastrangelo and E. Ciani. (2021).
Genome-wide analyses reveal population structure and identify
candidate genes associated with tail fatness in local sheep from a
semi-arid area. Animal 15(4): 100193.
Bai, W. L., Yin, R. H., Zhao, S. J., Jiang, W. Q., Yin, R. L., Ma, Z. J., ...
& Zhao, Z. H. (2014). Selection of suitable reference genes for studying
gene expression in milk somatic cell of yak (Bos grunniens)
during the lactation cycle. Journal of Dairy Science, 97(2), 902-910.
Chen, L., Wang, D., Wu, Z., Ma, L., & Daley, G. Q. (2010). Molecular
basis of the first cell fate determination in mouse embryogenesis.
Cell research, 20(9), 982-993.
Cruise, B. A., P. Xu and A. K. Hall. (2004). Wounds increase activin
in skin and a vasoactive neuropeptide in sensory ganglia. Developmental
Biology 271(1):1-10.
Dai, W. T., R. R. White, J. X. Liu and H. Y. Liu. (2018). Seryl-tRNA
synthetase-mediated essential amino acids regulate β-casein synthesis
via cell proliferation and mammalian target of rapamycin
(mTOR) signaling pathway in bovine mammary epithelial cells.
Journal of Dairy Science 101(11): 10456-10468.
Drögemüller, C., O. Distl and T. Leeb. (2001). Partial deletion of the
bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle.
Genome Research 11(10): 1699-1705.
Glister, C., Satchell, L., & Knight, P. G. (2010). Changes in expression
of bone morphogenetic proteins (BMPs), their receptors and inhibin
co-receptor betaglycan during bovine antral follicle development:
inhibin can antagonize the suppressive effect of BMPs on thecal
androgen production. Reproduction, 140(5), 699.
Guo, C. L., Y.T. Li, X. Y. Lin, M. D. Hanigan, Z. G. Yan, Z. Y. Hu,
Q.L. Hou, F.G. Jiang and Z. H. Wang. (2017). Effects of graded
removal of lysine from an intravenously infused amino acid mixture
on lactation performance and mammary amino acid metabolism
in lactating goats. Journal of Dairy Science 100(6): 4552-4564.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment
editor and analysis program for Windows 95/98/NT. In Nucleic
acids symposium series 41(41), pp. 95-98.
Hecker, K. H., P. D. Taylor and D. T. Gjerde. (1999). Mutation detection
by denaturing DNA chromatography using fluorescently labeled
polymerase chain reaction products. Analytical Biochemistry
(2): 156-164.
Höglund, J. K., G. Sahana, R. F. Brøndum, B. Guldbrandtsen, B.Buitenhuis
and M. S. Lund. (2014). Fine mapping QTL for female fertility
on BTA04 and BTA13 in dairy cattle using HD SNP and sequence
data. BMC Genomics 15: 1-10.
Hornbachner, R., Lackner, A., Papuchova, H., Haider, S., Knöfler, M.,
Mechtler, K., & Latos, P. A. (2021). MSX2 safeguards syncytiotrophoblast
fate of human trophoblast stem cells. Proceedings of
the National Academy of Sciences, 118(37), e2105130118.
Hosseini, S. M., Dufort, I., Caballero, J., Moulavi, F., Ghanaei, H. R., &
Sirard, M. A. (2015). Transcriptome profiling of bovine inner cell
mass and trophectoderm derived from in vivo generated blastocysts.
BMC developmental biology, 15, 1-13.
Hu, Z. L., C. A. Park and J. M. Reecy. (2022). Bringing the animal
QTLdb and CorrDB into the future: meeting new challenges
and providing updated services. Nucleic acids research 50(D1):
D956-D961
Kumar, S., G. Stecher and K. Tamura. (2016). MEGA7: molecular evolutionary
genetics analysis version 7.0 for bigger datasets. Molecular
Biology and Evolution 33(7): 1870-1874.
Lavery, K., P. Swain, D. Falb and M. H. Alaoui-Ismaili. (2008). BMP-2/4
and BMP-6/7 differentially utilize cell surface receptors to induce
osteoblastic differentiation of human bone marrow-derived mesenchymal
stem cells. Journal of Biological Chemistry 283(30):
-20958.
Lu, Z., J. Liu, J. Han and B. Yang. (2020). Association between BMP2
functional polymorphisms and sheep tail type. Animals 10(4): 739.
McKeehan, W. L., F. Wang and M. Kan. (1997). The heparan sulfate–
fibroblast growth factor family: diversity of structure and function.
Progress in Nucleic Acid Research and Molecular Biology
: 135-176.
Moreau-Gachelin, F., F. Wendling, T. Molina, N. Denis, M. Titeux, G.
Grimber, P. Briand, W. Vainchenker and A. Tavitian. 1996. Spi-1/
PU. 1 transgenic mice develop multistep erythroleukemias. Molecular
and Cellular Biology 16(5):2453-2463.
Moura, J., L. Da Silva, M. T. Cruz and E. Carvalho. (2013). Molecular
and cellular mechanisms of bone morphogenetic proteins and activins
in the skin: potential benefits for wound healing. Archives
of Dermatological Research 305: 557-569.
Oliver, J. R., R. Kushwah and J. Hu. (2012). Multiple roles of the epithelium-
specific ETS transcription factor, ESE-1, in development
and disease. Laboratory Investigation 92(3):320-330.
Ozawa, M., Sakatani, M., Yao, J., Shanker, S., Yu, F., Yamashita, R.,
... & Hansen, P. J. (2012). Global gene expression of the inner cell
mass and trophectoderm of the bovine blastocyst. BMC developmental
biology, 12, 1-13.
Özhan, M., Tüzemen,N. Ve Yanar, M.2012, Büyük Baş Hayvan
Yetiştirme, Atatürk Üniversitesi Ziraat Fakültesi Ofset Tesisi,yayın
no:134, 6. Baskı, Erzurum
Park, A., M. V. Hogan, G. S. Kesturu, R. James, G. Balian and A. B.
Chhabra. (2010). Adipose-derived mesenchymal stem cells treated
with growth differentiation factor-5 express tendon-specific markers.
Tissue Engineering Part A 16(9): 2941-2951.
Ririe, K.M., R.P. Rasmussen and C.T. Wittwer. (1997). Product Differentiation
by Analysis of DNA Melting Curves during the Polymerase
Chain Reaction. Analytical Biochemistry 245(2): 154-160.
Schlötterer, C., R. Tobler, R. Kofler and V. Nolte. (2014). Sequencing
pools of individuals-mining genome-wide polymorphism data
without big funding. Nature Reviews Genetics 15(11): 749-763.
Seabury, C. M., D. L. Oldeschulte, M. Saatchi, J. E. Beever, J. E. Decker,
Y. A. Halley and J. F. Taylor. (2017). Genome-wide association
study for feed efficiency and growth traits in US beef cattle. BMC
Genomics 18(1): 1-25.
Seth, A. and D. K. Watson. (2005). ETS transcription factors and their
emerging roles in human cancer. European journal of Cancer 41(16):
-2478.
Sun, S., Yano, S., Nakanishi, M. O., Hirose, M., Nakabayashi, K., Hata,
K., ... & Tanaka, S. (2021). Maintenance of mouse trophoblast stem
cells in KSR-based medium allows conventional 3D culture. Journal
of Reproduction and Development, 67(3), 197-205.
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas,
J., ... & Mering, C. V. (2019). STRING v11: protein–protein
association networks with increased coverage, supporting functional
discovery in genome-wide experimental datasets. Nucleic acids
research, 47(D1), D607-D613.
Tummala, R. and S. Sinha. (2006). Differentiation-Specific Transcriptional
Regulation of the ESE-2 Gene by a Novel Keratinocyte-Restricted
Factor, Journal of Cellular Biochemistry 97:766–781.
Valdecantos, P. A., Miana, R. D. C. B., García, E. V., García, D. C.,
Roldán-Olarte, M., & Miceli, D. C. (2017). Expression of bone
morphogenetic protein receptors in bovine oviductal epithelial cells:
Evidence of autocrine BMP signaling. Animal Reproduction Science,
, 89-96.
Wang, F., J. L. Van Baal, J. J. Ma, Loor, Z. L. Wu, J. Dijkstra and D. Bu.
(2019). Relationship between lysine/methionine ratios and glucose
levels and their effects on casein synthesis via activation of the
mechanistic target of rapamycin signaling pathway in bovine mammary
epithelial cells. Journal of Dairy Science 102(9): 8127-8133.
Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., ... &
Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in
development and human diseases. Genes & diseases, 1(1), 87-105.
Xia, W., J. S. Osorio, Y. Yang, D. Liu and M. F. Jiang. (2018). Characterization
of gene expression profiles related to yak milk protein
synthesis during the lactation cycle. Journal of Dairy Science
(12):11150-11158.
Xia, W., Osorio, J. S., Yang, Y., Liu, D., & Jiang, M. F. (2018). Characterization
of gene expression profiles related to yak milk protein
synthesis during the lactation cycle. Journal of Dairy Science,
(12), 11150-11158.
Xu, L., L. Yang, B. Zhu, W. Zhang, Z. Wang, Y. Chen, L. Zhang, X.
Gao, H. Gao, H.X. Gao G.E., Liu and J. Li. (2019). Genome-wide scan reveals genetic divergence and diverse adaptive selection in
Chinese local cattle. BMC genomics 20(1): 1-12.
Zhou, J., R. Chehab, J. Tkalcevic, M.J. Naylor, J. Harris, T.J. Wilson,
S. Tsao, I. Tellis, S. Zavarsek, D. Xu, E.J. Lapinskas, J. Visvader,
G.J. Lindeman, R. Thomas, C.J. Ormandy, P.J. Hertzog, I. Kola and
M. A. Pritchard. (2005). ELF5 is essential for early embryogenesis
and mammary gland development during pregnancy and lactation.
The EMBO journal 24(3): 635-644.
Am häufigsten gelesenen Artikel dieser/dieses Autor/in