Efficacy of Dietary Mycotoxins Adsorbents to Toxic Effects of Zearalenone and Fumonisin in Weaned Piglets


N Puvača
https://orcid.org/0000-0002-5500-7010
S Roljević Nikolić2
I Radojičić
V Bursić
G Avantaggiato
V Tufarelli
L Pinotti
I Brkić
Résumé

Mycotoxin contamination in animal feed poses a significant threat to animal health and productivity, particularly in swine production. Zearalenone (ZEN) and fumonisins (FBs) are among the most prevalent mycotoxins found in swine diets, exerting toxic effects on various organs and reproductive systems. This study investigates the efficacy of a dietary mycotoxin adsorbent in mitigating the toxic effects of ZEN and FBs on weaned piglets, focusing on vulva size, liver histology, and ovarian histology. A total of 60 weaned piglets were randomly assigned to different dietary treatments: control diet naturally contaminated diet with ZEN and FBs (T1), and experimental diets supplemented with the bentonite-based mycotoxin adsorbent named Mycostop Duplo® in two concentrations, i.e. 1.0 kg/ton (T2) and 2.5 kg/ton (T3) of complete feed. At the end of the trial, vulvas were pictured and measured, while liver and ovarian samples were collected for histological analysis. Results indicated that piglets fed the contaminated diet without the adsorbent exhibited significant increases in vulva size compared to the control group (p < 0.05). Histological examination of the liver revealed notable moderate liver dysplasia in the control group, indicative of liver damage. Similarly, ovarian histology showed alterations in follicular development and ovarian morphology in piglets exposed to ZEN. In contrast, piglets receiving the contaminated diet supplemented with the mycotoxin adsorbent showed significantly reduced vulva sizes compared to the contaminated group (p < 0.05). Histological analysis of liver and ovarian tissues from the adsorbent-supplemented group revealed mitigated histopathological changes compared to the contaminated group, suggesting protective effects against ZEN and FB toxicity. In conclusion, dietary supplementation with Mycostop Duplo® effectively mitigated the toxic effects of ZEN and FBs on weaned piglets, as evidenced by reduced vulva sizes and ameliorated histological changes in the liver and ovaries. These findings underscore the importance of mycotoxin management strategies in swine nutrition to safeguard animal health and welfare. Further research is warranted to optimize the use of mycotoxin adsorbents and evaluate their long-term effects on piglet growth and reproductive performance.

Article Details
  • Rubrique
  • Research Articles
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Adegbeye, M. J., Reddy, P. R. K., Chilaka, C. A., Balogun, O. B., Elghandour,
M. M. M. Y., Rivas-Caceres, R. R., & Salem, A. Z. M. (2020).
Mycotoxin toxicity and residue in animal products: Prevalence, consumer
exposure and reduction strategies - A review. Toxicon, 177,
Akbar, A., Majeed, F. A., Sadiq, M. B., Khan, S. A., & Rabaan, A. A.
(2022). Mycotoxins occurrence in food commodities, their associated
hazards and control strategies. Journal of the Hellenic Veterinary
Medical Society, 73(1), 3853-3866. https://doi.org/10.12681/
jhvms.26023
Awuchi, C. G., Ondari, E. N., Ogbonna, C. U., Upadhyay, A. K., Baran,
K., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. P. F. (2021).
Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types,
Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification
Strategies—A Revisit. Foods, 10(6), Article 6. https://doi.
org/10.3390/foods10061279
Ben Ammar, R., Zahra, H. A., Abu Zahra, A. M., Alfwuaires, M., Abdulaziz
Alamer, S., Metwally, A. M., Althnaian, T. A., & Al-Ramadan, S.
Y. (2023). Protective Effect of Fucoxanthin on Zearalenone-Induced
Hepatic Damage through Nrf2 Mediated by PI3K/AKT Signaling.
Marine Drugs, 21(7), Article 7. https://doi.org/10.3390/md21070391
Bulgaru, V. C., Pertea, A. M., Grosu, I. A., Anghel, A. C., Pistol, G. C.,
Marin, D. E., Dinischiotu, A., & Taranu, I. (2023). Effects and Underlying
Mechanisms of Zearalenone Mycotoxin at Concentrations
Close to the EC Recommendation on the Colon of Piglets after Weaning.
Agriculture, 13(7), Article 7. https://doi.org/10.3390/agriculture13071372
Burel, C., Tanguy, M., Guerre, P., Boilletot, E., Cariolet, R., Queguiner,
M., Postollec, G., Pinton, P., Salvat, G., Oswald, I. P., & Fravalo, P.
(2013). Effect of Low Dose of Fumonisins on Pig Health: Immune
Status, Intestinal Microbiota and Sensitivity to Salmonella. Toxins,
Buszewska-Forajta, M. (2020). Mycotoxins, invisible danger of feedstuff
with toxic effect on animals. Toxicon, 182, 34-53. https://doi.
org/10.1016/j.toxicon.2020.04.101
Chen, J., Wei, Z., Wang, Y., Long, M., Wu, W., & Kuca, K. (2021). Fumonisin
B1: Mechanisms of toxicity and biological detoxification
progress in animals. Food and Chemical Toxicology, 149, 111977.
Chen, Q., Lu, Z., Hou, W., Shi, B., & Shan, A. (2015). Effects of Modified
Maifanite on Zearalenone Toxicity in Female Weaner Pigs. Italian
Journal of Animal Science, 14(2), 3597. https://doi.org/10.4081/
ijas.2015.3597
Cimbalo, A., Alonso-Garrido, M., Font, G., & Manyes, L. (2020). Toxicity
of mycotoxins in vivo on vertebrate organisms: A review. Food
and Chemical Toxicology, 137, 111161. https://doi.org/10.1016/j.
fct.2020.111161
Čolović, R., Puvača, N., Cheli, F., Avantaggiato, G., Greco, D., Đuragić,
O., Kos, J., & Pinotti, L. (2019). Decontamination of Mycotoxin-
Contaminated Feedstuffs and Compound Feed. Toxins, 11(11),
Dänicke, S., Carlson, L., Heymann, A.-K., Grümpel-Schlüter, A.,
Doupovec, B., Schatzmayr, D., Streit, B., Kersten, S., & Kluess, J.
(2023). Inactivation of zearalenone (ZEN) and deoxynivalenol (DON)
in complete feed for weaned piglets: Efficacy of ZEN hydrolase ZenA
and of sodium metabisulfite (SBS) as feed additives. Mycotoxin Research,
Deng, Z., Jang, K. B., Jalukar, S., Du, X., & Kim, S. W. (2023). Efficacy of
Feed Additive Containing Bentonite and Enzymatically Hydrolyzed
Yeast on Intestinal Health and Growth of Newly Weaned Pigs under
Chronic Dietary Challenges of Fumonisin and Aflatoxin. Toxins,
D’Mello, J. P. F., Placinta, C. M., & Macdonald, A. M. C. (1999). Fusarium
mycotoxins: A review of global implications for animal health,
welfare and productivity. Animal Feed Science and Technology,
Elliott, C. T., Connolly, L., & Kolawole, O. (2020). Potential adverse
effects on animal health and performance caused by the addition of
mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin
Research, 36(1), 115-126. https://doi.org/10.1007/s12550-019-
-7
Fruhauf, S., Novak, B., Nagl, V., Hackl, M., Hartinger, D., Rainer, V.,
Labudová, S., Adam, G., Aleschko, M., Moll, W.-D., Thamhesl, M.,
& Grenier, B. (2019). Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated
Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity
In Vitro and In Vivo. Toxins, 11(8), Article 8. https://doi.
org/10.3390/toxins11080481
Gajęcka, M., Zielonka, Ł., & Gajęcki, M. (2017). Activity of Zearalenone
in the Porcine Intestinal Tract. Molecules, 22(1), Article 1. https://doi.
org/10.3390/molecules22010018
Gao, Y., Meng, L., Liu, H., Wang, J., & Zheng, N. (2020). The Compromised
Intestinal Barrier Induced by Mycotoxins. Toxins, 12(10),
Gao, Z., Luo, K., Zhu, Q., Peng, J., Liu, C., Wang, X., Li, S., & Zhang,
H. (2023). The natural occurrence, toxicity mechanisms and management
strategies of Fumonisin B1; A review. Environmental Pollution,
Hassan, A. A., Abu Hafsa, S. H., Elghandour, M. M. M. Y., Kanth Reddy,
P. R., Monroy, J. C., & Salem, A. Z. M. (2019). Dietary Supplementation
with sodium bentonite and coumarin alleviates the toxicity of
aflatoxin B1 in rabbits. Toxicon, 171, 35-42. https://doi.org/10.1016/j.
toxicon.2019.09.014
Hussain, D., Mateen, A., & Gatlin, D. M. (2017). Alleviation of aflatoxin
B1 (AFB1) toxicity by calcium bentonite clay: Effects on growth
performance, condition indices and bioaccumulation of AFB1 residues
in Nile tilapia (Oreochromis niloticus). Aquaculture, 475, 8-15.
Kinkade, C. W., Rivera-Núñez, Z., Gorcyzca, L., Aleksunes, L. M., &
Barrett, E. S. (2021). Impact of Fusarium-Derived Mycoestrogens on
Female Reproduction: A Systematic Review. Toxins, 13(6), Article 6.
Kócsó, D. J., Szabó-Fodor, J., Mézes, M., Balogh, K., Ferenczi, S., Szabó,
A., Bóta, B., & Kovács, M. (2018). Fumonisin B1 exposure increases
Hsp70 expression in the lung and kidney of rats without inducing significant
oxidative stress. Acta Veterinaria Hungarica, 66(3), 394-407.
Luo, Y., Liu, X., Yuan, L., & Li, J. (2020). Complicated interactions between
bio-adsorbents and mycotoxins during mycotoxin adsorption:
Current research and future prospects. Trends in Food Science &
Mahato, D. K., Devi, S., Pandhi, S., Sharma, B., Maurya, K. K., Mishra,
S., Dhawan, K., Selvakumar, R., Kamle, M., Mishra, A. K., & Kumar,
P. (2021). Occurrence, Impact on Agriculture, Human Health, and
Management Strategies of Zearalenone in Food and Feed: A Review.
Toxins, 13(2), Article 2. https://doi.org/10.3390/toxins13020092
Ndiaye, S., Zhang, M., Fall, M., Ayessou, N. M., Zhang, Q., & Li, P.
(2022). Current Review of Mycotoxin Biodegradation and Bioadsorption:
Microorganisms, Mechanisms, and Main Important Applications.
Toxins, 14(11), Article 11. https://doi.org/10.3390/toxins14110729
Ochieng, P. E., Croubels, S., Kemboi, D., Okoth, S., De Baere, S., Cavalier,
E., Kang’ethe, E., Faas, J., Doupovec, B., Gathumbi, J., Douny,
C., Scippo, M.-L., Lindahl, J. F., & Antonissen, G. (2023). Effects
of Aflatoxins and Fumonisins, Alone or in Combination, on Performance,
Health, and Safety of Food Products of Broiler Chickens, and
Mitigation Efficacy of Bentonite and Fumonisin Esterase. Journal of
Agricultural and Food Chemistry, 71(36), 13462-13473. https://doi.
org/10.1021/acs.jafc.3c01733
Oldenburg, E., Höppner, F., Ellner, F., & Weinert, J. (2017). Fusarium diseases
of maize associated with mycotoxin contamination of agricultural
products intended to be used for food and feed. Mycotoxin Research,
Pack, E., Stewart, J., Rhoads, M., Knight, J., Clark, S., Schmale, D. G.,
& De Vita, R. (2020). Effects of short-term moderate ZEN consumption
on uterosacral ligament elasticity in pubertal gilts. Research
in Veterinary Science, 133, 202-209. https://doi.org/10.1016/j.
rvsc.2020.09.023
Perrone, G., Ferrara, M., Medina, A., Pascale, M., & Magan, N. (2020).
Toxigenic Fungi and Mycotoxins in a Climate Change Scenario:
Ecology, Genomics, Distribution, Prediction and Prevention of the
Risk. Microorganisms, 8(10), Article 10. https://doi.org/10.3390/microorganisms8101496
Pierron, A., Alassane-Kpembi, I., & Oswald, I. P. (2016). Impact of mycotoxin
on immune response and consequences for pig health. Animal
Puvača, N., Ljubojević Pelić, D., & Tufarelli, V. (2023). Mycotoxins Adsorbents
in Food Animal Production. Journal of Agronomy, Technology
and Engineering Management (JATEM), 6(5), 944-952. https://
doi.org/10.55817/GYIC7602
Puvača, N., Ljubojević Pelić, D., Tufarelli, V., Nikolova, N., Bursić, V.,
Vapa, I., & Vuković, G. (2023). Dietary Effects of Mycotoxins Adsorbents
Mycostop Premium® and Mycostop Duplo® on Piglets Productive
Performance and Blood Serum Enzyme Activities. Journal of
Agronomy, Technology and Engineering Management, 6(6), 988-997.
Ramesh, M., Sujitha, M., Anila, P. A., Ren, Z., & Poopal, R. K. (2021).
Responses of Cirrhinus mrigala to second-generation fluoroquinolone
(ciprofloxacin) toxicity: Assessment of antioxidants, tissue morphology,
and inorganic ions. Environmental Toxicology, 36(5), 887-902.
Rao, Z.-X., Tokach, M. D., Woodworth, J. C., DeRouchey, J. M., Goodband,
R. D., Calderón, H. I., & Dritz, S. S. (2020). Effects of Fumonisin-
Contaminated Corn on Growth Performance of 9 to 28 kg Nursery
Pigs. Toxins, 12(9), Article 9. https://doi.org/10.3390/toxins12090604
Rasheed, U., Ain, Q. U., Yaseen, M., Fan, X., Yao, X., Tong, Z., & Liu,
B. (2020). Modification of bentonite with orange peels extract and its
application as mycotoxins’ binder in buffered solutions and simulated
gastrointestinal fluids. Journal of Cleaner Production, 267, 122105.
Ropejko, K., & Twarużek, M. (2021). Zearalenone and Its Metabolites—
General Overview, Occurrence, and Toxicity. Toxins, 13(1), Article 1.
Sharma, V., & Patial, V. (2021). Food Mycotoxins: Dietary Interventions
Implicated in the Prevention of Mycotoxicosis. ACS Food Science
& Technology, 1(10), 1717-1739. https://doi.org/10.1021/acsfoodscitech.
c00220
Soriano, J. M., González, L., & Catalá, A. I. (2005). Mechanism of action
of sphingolipids and their metabolites in the toxicity of fumonisin B1.
Progress in Lipid Research, 44(6), 345-356. https://doi.org/10.1016/j.
plipres.2005.09.001
Terciolo, C., Bracarense, A. P., Souto, P. C. M. C., Cossalter, A.-M.,
Dopavogui, L., Loiseau, N., Oliveira, C. A. F., Pinton, P., & Oswald,
I. P. (2019). Fumonisins at Doses below EU Regulatory Limits Induce
Histological Alterations in Piglets. Toxins, 11(9), Article 9. https://doi.
org/10.3390/toxins11090548
Wang, N., Wu, W., Pan, J., & Long, M. (2019). Detoxification Strategies
for Zearalenone Using Microorganisms: A Review. Microorganisms,
Xu, R., Kiarie, E. G., Yiannikouris, A., Sun, L., & Karrow, N. A. (2022).
Nutritional impact of mycotoxins in food animal production and strategies
for mitigation. Journal of Animal Science and Biotechnology,
Zheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal
Health of Pigs Upon Weaning: Challenges and Nutritional Intervention.
Frontiers in Veterinary Science, 8. https://doi.org/10.3389/
fvets.2021.628258
Articles les plus lus par le même auteur ou la même autrice