How 10th graders understand the dense ordering of rational numbers: a teaching experiment


Published: Jul 21, 2022
Keywords:
Rational numbers dense ordering conceptual change synthetic models
Dimitris Fokas
Xenia Vamvakoussi
Abstract

A major source of difficulty in the transition from natural to rational numbers is the interference of natural number knowledge in rational number learning. The framework theory approach to conceptual change assumes that students use their initial theories of numbers as natural numbers to make sense of rational numbers; and that the background assumptions of these theories are not easily revised, an example being the idea that numbers are discrete. Natural numbers are indeed discrete (i.e., given any natural number, it is always possible to define its successor in the natural numbers set). On the contrary, rational numbers are densely ordered (i.e., given any rational number, it is never possible to define its successor). The idea of discreteness stands in the way of students’ understanding of the density of rational numbers. We present a teaching experiment that investigated 15 11th graders’ understanding of two different aspects of density, namely the fact that there are infinitely many numbers in any rational number interval (“infinity of intermediates”); and that no rational number has a successor (“no successor principle”). We hypothesized that these aspects of density, although mathematically equivalent, are not equally challenging for students. First, students’ initial understandings of density were pre-tested in individual interviews; then each student was exposed to the idea of the arithmetic mean of two numbers that, in principle, could support understanding of both aspects of density; and, finally, each student  revisited the tasks of the pretest and was prompted, when necessary, to use the idea of the arithmetic mean. Most students grasped the “infinity of intermediates” but all continued to assume the successor principle. From the perspective of the framework theory approach to conceptual change, this is a synthetic conception, since students accept the infinity of intermediates while retaining the successor principle.    

Article Details
  • Section
  • SPECIAL SECTION
Downloads
Download data is not yet available.
References
Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113, 447-455. http://dx.doi.org/10.1016/j.jecp.2012.06.004
Βαμβακούση, Ξ. (2019 ). Η προβλεπτική και επεξηγηματική ισχύς της προσέγγισης της θεωρίας πλαισίου στην εννοιολογική αλλαγή στα μαθηματικά: Η περίπτωση των ρητών αριθμών. Στο Ε. Σκοπελίτη & Ν. Κυριακοπούλου (Επιμ.), Νόηση και μάθηση υπό το πρίσμα της εννοιολογικής αλλαγής (σελ. 145-162). Εκδόσεις Gutenberg.
Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247-253. http://dx.doi.org/10.1016/j.cedpsych.2012.07.001
Depaepe, F., Torbeyns, J., Vermeersch, N., Janssens, D., Janssen, R., Kelchtermans, G., Verschaffel, L., & Van Dooren, W. (2015). Teachers' content and pedagogical content knowledge on rational numbers: A comparison of prospective elementary and lower secondary school teachers. Teaching and Teacher Education, 47, 82-92.
Giannakoulias, E., Souyoul, A., & Zachariades, T. (2007). Students’ thinking about fundamental real numbers properties. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 426-425). ERME, Department of Education, University of Cyprus. http://erme.site/cerme-conferences/cerme-5/
Hannula, M. S., Pehkonen, E., Maijala, H., & Soro, R. (2006). Levels of students’ understanding on infinity.Teaching Mathematics and Computer Science, 4(2), 317–337. http://dx.doi.org/10.5485/ TMCS.2006.0129
Hartnett, P. M., & Gelman, R. (1998). Early understandings of number: Paths or barriers to the construction of new understandings? Learning and Instruction, 8, 341-374. http://dx.doi.org/10.1016/S0959-4752(97)00026-1
Malara, N. (2001). From fractions to rational numbers in their structure: Outlines for an innovative didactical strategy and the question of density. In J. Novotná (Ed.), Proceedings of the 2nd Conference of the European Society for Research Mathematics Education II (pp. 35–46). Univerzita Karlova v Praze, Pedagogická Faculta. http://erme.site/wp-content/uploads/2021/06/CERME2_proceedings.pdf
McMullen, J., Laakkonen, E., Hannula-Sormunen, M., & Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept(s). Learning and Instruction, 37, 14-20. http://dx.doi.org/10.1016/j.learninstruc.2013.12.004
Merenluoto, K., & Lehtinen, E. (2002). Conceptual change in mathematics: Understanding the real numbers. In: M. Limon, & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 233–258). Kluwer. http://dx.doi.org/10.1007/0-306-47637-1_13
Moss, J. (2005). Pipes, tubes, and beakers: new approaches to teaching the rational-number system. In M. S. Donovan & J. D. Bransford (Eds.), How students learn: mathematics in the classroom (pp. 121–162). National Academic Press. https://nap.nationalacademies.org/read/11101/chapter/6
Neumann, R. (1998). Students’ ideas on the density of fractions. In H.G. Weigand, A. Peter-Koop, N.Neil, K.Reiss, G. Torner & B. Wollring (Eds.), Proceedings of the Annual Meeting of the Gesellschaft fur Didaktik der Mathematik (pp. 97-104). Retrieved June 13 2022 from http://webdoc.gwdg.de/ebook/e/gdm/1998/neumann3.pdf
Ni, Y., & Zhou, Y-D. (2005). Teaching and learning fraction and rational numbers: the origins and implications of whole number bias. Educational Psychologist, 40(1), 27–52. http://dx.doi.org/10.1207/ s15326985ep4001_3
Núñez, R., & Lakoff, G. (2005). The cognitive foundations of mathematics: The role of conceptual metaphor. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 109 - 124). Psychology Press. http://dx.doi.org/10.4324/9780203998045
Siegler, R. S. (2006). Microgenetic analyses of learning. In W. Damon& R. M. Lerner (Eds.), D. Kuhn & R. S. Siegler (Volume Eds.), Handbook of child psychology (6th Ed., 2ndV., pp.464-510). John Wiley & Sons. http://dx.doi.org/10.1002/9780470147658.chpsy0211
Singer, F. M., & Voica, C. (2008). Between perception and intuition: Learning about infinity. Journal of Mathematical Behavior, 27, 188–205. http://dx.doi.org/10.1016/j.jmathb.2008.06.001
Smith III, J. P. (1995). Competent reasoning with rational numbers. Cognition and Instruction, 13(1), 3-50. http://dx.doi.org/10.1207/s1532690xci1301_1
Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: Elementary school students’ understanding of the infinite divisibility of number and matter. Cognitive Psychology, 51, 101–140. http://dx.doi.org/10.1016/j.cogpsych.2005.03.001
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267-307). Routledge. https://doi.org/10.4324/9781410602725
Tirosh, D., Fischbein, E., Graeber, A. O., & Wilson, J. W. (1999). Prospective elementary teachers’ conceptions of rational numbers. Retrieved May 05, 2005 from http://jwilson.coe.uga.edu/Texts.Folder/ Tirosh/Pros.El.Tchrs.html
Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5-13. http://dx.doi.org/10.1016/j.learninstruc.2014.03.002
Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31, 344 -355. http://dx.doi.org/ 10.1016/j.jmathb.2012.02.001
Vamvakoussi, X. & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: A conceptual change approach. Learning and Instruction, 14, 453-467. http://dx.doi.org/10.1016/ j.learninstruc.2004.06.013
Vamvakoussi, X. & Vosniadou, S. (2007).How many numbers in an interval? Presuppositions, synthetic models and the effect of the number line. Ιn S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp. 267-283).Elsevier.
Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation.Cognition and Instruction, 28(2), 181-209. http://www.jstor.org/stable/27806348
Vamvakoussi, X., & Vosniadou, S. (2012). Bridging the gap between the dense and the discrete: the number line and the “rubber line” bridging analogy. Mathematical Thinking and Learning, 14, 265-284. http://dx.doi.org/10.1080/10986065.2012.717378
Vergnaud, G. (1996). The theory of conceptual fields. In L.P. Steffe, P. Nesher, P. Cobb, G.A. Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 219-244). Lawrence Erlbaum Associates. http://dx.doi.org/10.1159/000202727
Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 23-42). Routledge. http://dx.doi.org/10.4324/9780203154472
Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). Τhe framework theory approach to conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (1st ed., pp. 3-34). Lawrence Erlbaum Associates. http://dx.doi.org/10.4324/9780203154472