Παρανοήσεις των μαθητών στις αριθμητικές πράξεις μέσα από την προσέγγιση της εννοιολογικής αλλαγής


Δημοσιευμένα: Jul 21, 2022
Λέξεις-κλειδιά:
Προκατάληψη του φυσικού αριθμού πράξεις αριθμός εννοιολογική αλλαγή πολλαπλασιασμός παρανόηση
Κωνσταντίνος Π. Χρήστου
Περίληψη

Στην παρούσα εργασία χρησιμοποιείται το θεωρητικό πλαίσιο της εννοιολογικής αλλαγής στη μελέτη των λαθών των μαθητών με την έννοια του ρητού αριθμού και πιο συγκεκριμένα, στις παρανοήσεις που εμφανίζονται στις αριθμητικές πράξεις με δοσμένους αριθμούς και αριθμούς που λείπουν (π.χ., 14:_=5). Εξετάστηκε η υπόθεση ότι η «προκατάληψη του φυσικού αριθμού»- δηλαδή η τάση να χρησιμοποιείται η αρχική, διαισθητική αντίληψη για τον αριθμό που είναι οργανωμένη σε μία έννοια του αριθμού με ιδιότητες φυσικού αριθμού σε καταστάσεις που εμπλέκονται μη-φυσικοί αριθμοί- θα έχει διπλή επίδραση στις αριθμητικές πράξεις με αριθμούς που λείπουν: α) θα επηρεάζει τους μαθητές να θεωρούν ότι ο πολλαπλασιασμός πάντα μεγαλώνει, ενώ η διαίρεση πάντα μικραίνει τον διαιρετέο, και β) θα επηρεάζει την τάση τους να θεωρούν ότι οι αριθμοί που λείπουν θα μπορούσε να είναι μόνο φυσικοί αριθμοί. Το μοντέλο Εξισώσεων Γενικευμένης Εκτίμησης (GEE: Generalized estimated equations) εφαρμόστηκε στις απαντήσεις 300 μαθητών Ε’ και Στ’ Δημοτικού ενός ενοποιημένου δείγματος δύο προηγούμενων μελετών που εξέτασαν την ίδια υπόθεση. Στους συμμετέχοντες δόθηκαν έργα που ήταν συμβατά ή μη-συμβατά με τις διαισθητικές πεποιθήσεις τους για τις ιδιότητες των αριθμών στις πράξεις. Τα αποτελέσματα υποστήριξαν την υπόθεση της μελέτης. Στα έργα που ήταν συμβατά με τις διαισθητικές πεποιθήσεις για το μέγεθος των αποτελεσμάτων κάθε πράξης, αλλά και για το ότι οι αριθμοί που λείπουν πρέπει να είναι φυσικοί αριθμοί, σημειώθηκαν στατιστικώς υψηλότερες επιδόσεις σε σχέση με τα έργα που διέψευδαν αυτές τις πεποιθήσεις.

Λεπτομέρειες άρθρου
  • Ενότητα
  • ΕΙΔΙΚΟ ΑΦΙΕΡΩΜΑ
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447–455. https://doi.org/10.1016/j.jecp.2012.06.004
Bell, A., Swan, M., & Taylor, G. (1981). Choice of operation in verbal problems with decimal numbers. Educational studies in mathematics, 12, 399-420. https://doi.org/10.1007/BF00308139
Biza, I., & Zachariades, T. (2006). Conceptual change in advanced mathematical thinking: The case of tangent line. In J. Novotna, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education Vol. 1 (pp. 168-170). Prague, Czech Republic: PME. Retrieved at https://files.eric.ed.gov/fulltext/ED496931.pdf
Carpenter, T., Fennema, E., & Romberg, T. (1993). Rational numbers: An integration of research. Erlbaum.
Christou, K. P. (2015a). The dual aspect of Natural Number Bias in Arithmetic Operations. Mediterranean Journal for research in Mathematics Education, 14, 107-121.
Christou, K. P. (2015b). Natural number bias in operations with missing numbers. ZDM Mathematics Education, 47(5), 747-758. https://doi.org/10.1007/s11858-015-0675-6
Christou, K. P., & Vosniadou, S. (2012). What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra. Mathematical Thinking and Learning, 14(1), 1-27. https://doi.org/10.1080/10986065.2012.625074
Christou, K. P., Pollack, C., Van Hoof, J., & Van Dooren, W. (2020). Natural number bias in arithmetic operations with missing numbers – A reaction time study. Journal of Numerical Cognition, 6(1), 22–49. https://doi.org/10.5964/jnc.v6i1.228
De Corte, E., Verschaffel, L., & Pauwels, A. (1990). Influence of the semantic structure of word problems on second graders’ eye movements. Journal of Educational Psychology, 82(2), 359–365. https://doi.org/10.1037/0022-0663.82.2.359
Dimitrakopoulou, S. A., & Christou, K. P. (2018). Τα γράμματα-μεταβλητές: Πώς τα κατανοούν οι μαθητές και πώς εμφανίζονται στα βιβλία μαθηματικών του Γυμνασίου. Έρευνα στη Διδακτική των Μαθηματικών, 11, 31–52. https://doi.org/10.12681/enedim.18938
Dixon, J. A., Deets, J. K., & Bangert, A. (2001). The representations of the arithmetic operations include functional relationships. Memory & Cognition, 29(3), 462-477. https://doi.org/10.3758/BF03196397
Fischbein, E. (1987). Intuition in science and mathematics: An educational approach (Vol. 5). Springer Science & Business Media. https://doi.org/10.1007/0-306-47237-6
Fischbein, E. (1990). Intuition and information processing in mathematical activity. International Journal of Educational Research, 14(1), 31–50. https://doi.org/10.1016/0883-0355(90)90015-Z
Fischbein, E., Deri, M., Nello, M., & Marino, M. (1985). The role of implicit models in solving problems in multiplication and division. Journal of Research in Mathematics Education, 16, 3-17. https://doi.org/10.5951/jresematheduc.16.1.0003
Gelman, R. (1994). Constructivism and supporting environments. In D. Tirosh (Ed.), Implicit and explicit knowledge: An educational approach (pp. 55-82). Ablex.
Gelman, R. (2000). The epigenesis of mathematical thinking. Journal of Applied Developmental Psychology, 21, 27-37. https://doi.org/10.1016/S0193-3973(99)00048-9
Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal for Research in Mathematics Education, 22, 170-218. https://doi.org/10.5951/jresematheduc.22.3.0170
Greer, B. (1987). Nonconservation of multiplication and division involving decimals. Journal for Research in Mathematics Education, 18(1), 37-45. https://doi.org/10.5951/jresematheduc.18.1.0037
Greer, B. (1989). Conceptual obstacles to the development of the concepts of multiplication and division. In H. Mandl, E. De Corte, S. N. Bennet, & H. F. Friedrich (Eds.), Learning and instruction: European research in an international context, Vol. 2 (pp. 461-476). Pergamon.
Hart, K. M. (1981). Children's understanding of mathematics: 11-16. John Murray.
Hartnett, P., & Gelman, R. (1998). Early understandings of number: Paths or barriers to the construction of new understandings? Learning and Instruction, 8(4), 341-374. https://doi.org/10.1016/S0959-4752(97)00026-1
MacLeod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., & Bibi, U. (2003). In opposition to inhibition. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory, Vol. 43, (pp. 163–214). Elsevier Science.
Moss, J. (2005). Pipes, tubes, and beakers: New approaches to teaching the rational-number system. In S. Donovan & J. D. Bransford (Eds.), How students learn: History, mathematics, and science in the classroom (pp. 309-349). National Academy Press.
Nesher, P., & Peled, I. (1986). Shifts in reasoning. Educational studies in mathematics, 17(1), 67-79. https://doi.org/10.1007/BF00302379
Ni, Y. J., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3
Obersteiner, A., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2015). Who can escape the natural number bias in rational number tasks? A study involving students and experts. British Journal of Psychology, 107(3), 537-555. https://doi.org/10.1111/bjop.12161
Resnick, L. B. (1986). The development of mathematical intuition. In M. Perlmutter (Ed.), Perspectives on intellectual development: Minnesota Symposia on Child Psychology, Vol. 19 (pp. 159-194). Lawrence Erlbaum Associates, Inc.
Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 1301-1308. https://doi.org/10.1177/0956797612466268
Roell, M., Viarouge, A., Houdé, O., & Borst, G. (2019). Inhibition of the whole number bias in decimal number comparison: A developmental negative priming study. Journal of Experimental Child Psychology, 177, 240-247. https://doi.org/10.1016/j.jecp.2018.08.010
Shtulman, A., & Valcarcel, J. (2012). Scientific knowledge suppresses but does not supplant earlier intuitions. Cognition, 124(2), 209-215. https://doi.org/10.1016/j.cognition.2012.04.005
Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: Elementary school students’understanding of the infinite divisibility of number and matter. Cognitive Psychology, 51, 101-140. https://doi.org/10.1016/j.cogpsych.2005.03.001
Stafylidou, S., & Vosniadou, S. (2004). Students’ understanding of the numerical value of fractions: A conceptual change approach. Learning and Instruction, 14, 503-518. https://doi.org/10.1016/ j.learninstruc.2004.06.015
Thorndike, E. L. (1922). The psychology of arithmetic. Macmillan.
Tirosh, D., & Graeber, A. O. (1989). Preservice elementary teachers' explicit beliefs about multiplication and division. Educational studies in mathematics, 20(1), 79-96. https://doi.org/10.1007/BF00356042
Tsamir, P., & Tirosh, D. (2007). Teaching for conceptual change: The case of infinite sets. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp. 299-317). Elsevier Press.
Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31, 344–355. https://doi.org/10.1016/j.jmathb.2012.02.001
Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2013). Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study. Educational studies in mathematics, 82(2), 323-330. https://doi.org/10.1007/s10649-012-9432-8
Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and Instruction, 28(2), 181 - 209. https://doi.org/10.1080/07370001003676603
Van Dooren, W., & Inglis, M. (Eds.). (2015). Inhibitory control in mathematical thinking, learning and problem solving: a survey. ZDM Mathematics Education, 47(5), 713-721. https://doi.org/10.1007/s11858-015-0715-2
Van Dooren, W., Lehtinen, E., & Verschaffel, L. (2015). Unraveling the gap between natural and rational numbers. Learning and Instruction, 37, 1-4. https://doi.org/10.1016/j.learninstruc.2015.01.001
Van Hoof, J., Vandewalle, J., Verschaffel, L., & Van Dooren, W. (2015). In search for the natural number bias in secondary school students' interpretation of the effect of arithmetical operations. Learning and Instruction, 30, 30-38. https://doi.org/10.1016/j.learninstruc.2014.03.004
Verschaffel, L., & Vosniadou, S. (Eds.). (2004). Extending the conceptual change approach to mathematics learning and teaching, [Special Issue] Learning and Instruction, 14(5), 445-451. https://doi.org/10.1016/j.learninstruc.2004.06.014.
Vosniadou, S. (2007). The conceptual change approach and its reframing. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction. (pp. 1–15). Elsevier Science.
Vosniadou, S., Pnevmatikos, D., Makris, N., Lepenioti, D., Eikospentaki, K., Chountala, A., & Kyrianakis, G. (2018). The Recruitment of Shifting and Inhibition in On‐line Science and Mathematics Tasks. Cognitive Science, 42(6), 1860-1886. https://doi.org/10.1111/cogs.12624
Vosniadou, S. Vamvakoussi, X., & Skopeliti, I. (2008). The Framework Theory Approach to the Problem of Conceptual Change. In S. Vosniadou (Ed.) International Handbook of Research on Conceptual Change (pp. 3-34), Routledge. https://doi.org/10.4324/9780203874813
Vosniadou, S., & Verschaffel, L. (2004). Extending the conceptual change approach to mathematics learning and teaching. Learning and Instruction, 14, 445-451. https://doi.org/10.1016/j.learninstruc.2004.06.014
Χρήστου, Κ. Π. (2019). Εννοιολογική αλλαγή και το φαινόμενο της προκατάληψης του φυσικού αριθμού στην κατανόηση της έννοιας της μεταβλητής. Στο Ν. Κυριακοπούλου & Ε. Σκοπελίτη (Επιμ.), Νόηση και Μάθηση υπό το πρίσμα της Εννοιολογικής Αλλαγής: Σύγχρονες Έρευνες και Προβληματισμοί (σελ.164-184). Αθήνα: Εκδόσεις Gutenberg.