Παγκόσμιες τάσεις Έρευνας εφαρμογών της Τεχνητής Νοημοσύνης στην Εθνική και Διεθνή Πολιτική: μια Βιβλιομετρική Ανάλυση


Published: Jan 2, 2026
Versions:
2026-01-02 (1)
Keywords:
Artificial Intelligence, National Politics International Politics Authorship Multiple Correspondence Analysis Hierarchical Clustering
LABORATORY TEACHING PERSONNEL
PROFESSOR
Abstract

The applications of AI in national and international politics, as well as in international relations, are growing. Geostrategic alliances are being challenged, new challenges are being introduced to the international agenda, and diplomats and negotiators have useful tools at their disposal to carry out their work. At the same time, new issues related to human rights are being raised. Artificial intelligence algorithms can directly analyse changing conditions during international crises, allowing the parties involved to act promptly and decisively. Machine learning algorithms are able to monitor social media, international news sources and other data streams in order to effectively circulate content while being able to identify early indicators of impending conflicts or humanitarian emergencies. 


Using R language tools, this study takes a bibliometric approach to the digital literature of the discipline of AI in national and international policy in order to create a survey of the field. To capture this image, relevant metadata such as annual production rates, most relevant sources, global citation frequencies, collaboration indices, affiliation frequency distributions, relevant word frequencies and word network dynamics are highlighted and analyzed. The datasets are further subjected to analysis through the Multiple Correspondence Analysis (MCA) method combined with Hierarchical Clustering (HC). The aim of this multivariate statistical analysis is to discern patterns and correlations between the digital authorship metrics of the specific subject matter and, through this process, the semantic understanding of AI engagement in national and international policy.

Article Details
  • Section
  • Articles
Downloads
Download data is not yet available.
Author Biographies
LABORATORY TEACHING PERSONNEL, a:1:{s:5:"el_GR";s:45:"ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ";}

Dimitrios Vagianos is a graduate of the School of Electrical and Computer Engineering of the Aristotle University of Thessaloniki. He holds a Master of Science degree with distinction in Mobile Communication Systems from the University of Surrey, UK, and a PhD degree from the Department of International and European Studies of the University of Macedonia in the field of Big Data Mining and Analysis of the Social Web. He is a member of the Laboratory Teaching Personnel at the University of Macedonia where he teaches in Greek and English independent undergraduate and postgraduate courses. His scientific work has been published as peer-reviewed articles in various scientific journals and as chapters in edited volumes of international publishers. [More details at www.uom.gr/en/vagianos]

PROFESSOR, UNIVERSITY OF MACEDONIA

Nikolaos Koutsoupias is a professor at the Department of International and European Studies, where he teaches courses in Computer Science and Data Analysis. His research interests include qualitative data analysis, text mining, social network analysis, art data analysis, and epistemology. He has published numerous scientific articles in international journals, book volumes, and conference proceedings. He is the head of the Governance and Information and Communication Technology Lab (GICT-Lab) and Director of the MSc in European Youth Policies, Entrepreneurship, Education and Culture in the relevant Department.

References
Αθανασιάδης, Η. (1995). Παραγοντική Ανάλυση Αντιστοιχιών και Ιεραρχική Ταξινόμηση. Εκδόσεις Νέων Τεχνολογιών, Αθήνα.
Βαγιάνος, Δ., Μποϊτσης, Ι., & Κουτσουπίας, Ν. (2023). Μελέτη Ψηφιακού Συγγραφικού Πλαισίου της Διαδικτυακής Πολιτικής: Μια Πολυµεταβλητή Στατιστική Ανάλυση. 11th National Data Analysis Conference, GSDA, Univ. of W. Macedonia, https://doi.org/10.5281/ZENODO.10828143
Δρόσος, Γ. (2006). Στατιστική & Ανάλυση Δεδομένων. Εκδόσεις Ανικούλα, Θεσσαλονίκη.
Καραπιστόλης ∆. (2011α) «Μέθοδοι Επεξεργασίας και Ανάλυσης ∆εδομένων». Εκδόσεις Αλτιντζής. Θεσσαλονίκη
Κόκκορης, Χ., Κουτσουπιάς, Ν., & Βασιλειάδης, Ν. (2024). Έρευνα των οικονομικών της εκπαίδευσης: Μία πολύπλευρη επισκόπηση (1993-2022). Εκπαίδευση, Δια Βίου Μάθηση, Έρευνα Και Τεχνολογική Ανάπτυξη, Καινοτομία Και Οικονομία, 3, 1–16. https://doi.org/10.12681/elrie.7120
Κουτσουπιάς, Ν., & Κοκοβίδου Μ. ((2023). Χαρτογράφηση της Έρευνας στο Κανονικό Δίκαιο Διεθνώς από το 1896. 11th National Data Analysis Conference, GSDA, Univ. of W. Macedonia, GREECE, 35–42. https://doi.org/10.17605/OSF.IO/XC89N
Μαυρομάτης, Γ. (1999). Στατιστικά Μοντέλα και Μέθοδοι Ανάλυσης Δεδομένων. University Studio Press, Θεσσαλονίκη.
Μικελης Κ. & Κουτσουπιας N. (2023). Χαρτογραφώντας την Έρευνα για τον Θουκυδίδη: Μια Διαχρονική Βιβλιογραφική Ανάλυση. 11th National Data Analysis Conference, GSDA, Univ. of W. Macedonia, 72–80. https://doi.org/10.17605/OSF.IO/CVBS5
Μπεχράκης, Θ. (1999). Πολυδιάστατη Ανάλυση Δεδομένων: Μέθοδοι και Εφαρμογές. Εκδόσεις Νέα Σύνορα – Α.Α. Λιβάνης, Αθήνα.
Παπαδημητρίου, Γ. (2007). Η Ανάλυση Δεδομένων. Εκδόσεις τυπωθήτω. Αθήνα.
Abramo, G.& D’Angelo, C.A. (2014). How do you define and measure research productivity? Scientometrics 2014, 101, 1129–1144.
Artyukhov, A. & Lapidus, A. & Yeremenko, O. & Artyukhova, N. & Churikanova, O. (2024). An R Studio Bibliometrix Analysis of Global Research Trends of Educational Crises in 2020s. SocioEconomic Challenges. 8. 88-108. 10.61093/sec.8(2).88-108.2024.
Beh, E. & Lombardo, R. (2021). Multiple Correspondence Analysis. 10.1002/9781119044482.ch6.
Benzécri, J.-P. (1992). Correspondence analysis handbook. New York: Marcel Dekker.
Bitzenis, A., & Koutsoupias, N. (2024). Big Data in Economics Research. In N. Tsounis & A. Vlachvei (Eds.), Applied Economic Research and Trends (pp. 1063–1072). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-49105-4_61
Bitzenis, A., Koutsoupias, N., & Boutsiouki, S. (2023). Business Research and Data Mining: A Bibliometric Analysis. 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 1–6. https://doi.org/10.1109/ICECCME57830.2023.10252699
Boiarskii, B. & Lyude, A. & Anastasiia, B. & Norikuni, O. & Hasegawa, H. (2024). Bibliometric analysis of the Japan-Russia scientific cooperation networks using R bibliometrix. Journal of Infrastructure, Policy and Development. 8. 6155. 10.24294/jipd.v8i8.6155.
Buyukkidik, S. (2022). A Bibliometric Analysis: A Tutorial for the Bibliometrix Package in R Using IRT Literature. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi. 13. 10.21031/epod.1069307.
Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146-166.
Darvish, H. (2020). Bibliometric Analysis using Bibliometrix an R Package. Journal of Scientometric Research. 8. 156-160. 10.5530/jscires.8.3.32.
der Derian, J. & Wendt, A. (2020). ‘Quantizing international relations’: The case for quantum approaches to international theory and security practice. Security Dialogue. 51. 096701062090190. 10.1177/0967010620901905.
Donthu, N. & Kumar, S. & Mukherjee, D. & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research. 133. 10.1016/j.jbusres.2021.04.070.
Doulani, A. (2020). A bibliometric analysis and science mapping of scientific publications of Alzahra University during 1986–2019. Libr.Hi Tech 2020, 39, 915–935.
Fernández L., R. & Alonso, J. & Porraspita, D. & Sánchez, M. (2022). PROSPECTIVE SCENARIOS: A LITERATURE REVIEW USING THE R BIBLIOMETRIX PACKAGE. 18. 1-30.
Giordani, P. & Ferraro, M. & Martella, F. (2020). Hierarchical Clustering. 10.1007/978-981-13-0553-5_2.
Greenacre, M. (1991). Interpreting multiple correspondence analysis. Applied Stochastic Models and Data Analysis. 7. 195 - 210. 10.1002/asm.3150070208.
Greenacre, M., & Blasius, J. (Eds.). (2006). Multiple correspondence analysis and related methods. CRC press.
Greenacre, M. J. (2007). Correspondence analysis in practice. Boca Raton: Chapman & Hall/CRC.
Johnson, J. (2019). Artificial intelligence & future warfare: implications for international security. Defense & Security Analysis. 35. 1-23. 10.1080/14751798.2019.1600800.
Johnson, J. (2020). Delegating strategic decision-making to machines: Dr. Strangelove Redux? Journal of Strategic Studies. 45. 439–477. 10.1080/01402390.2020.1759038.
Kiersey N.J. and Neumann I.B. (2013). Battlestar Galactica and International Relations. Abingdon: Routledge, 2013. ISBN 978 0415632812
Koutsoupias, N., & Papadimitriou, I. (2001). Hierarchical Classification In Insurance Data Analysis. In C. Zopounidis, P. M. Pardalos, & G. Baourakis, Fuzzy Sets in Management, Economics and Marketing (pp. 69–81). World Scientific. https://doi.org/10.1142/9789812810892_0005
Koutsoupias, N. (2024). Multiple Correspondence Analysis in Social Sciences and Humanities Research: A Longitudinal Mapping. Data Analysis Bulletin, 20(1), 59–77. https://doi.org/10.17605/OSF.IO/693DR
Maqsood A.A., & Khan, A. & Siddiqi, M.U. (2023). US-China Competition in Artificial Intelligence: Implications on Global Governance. 10.62345/jads.2023.12.4.37.
Mokry, S. & Gurol, J. (2024). Competing ambitions regarding the global governance of artificial intelligence: China, the US , and the EU. Global Policy. 15. 10.1111/1758-5899.13444.
Nahon, K. (2015). Where There Is Social Media There Is Politics. 10.4324/9781315716299-4.
Orús-Lacort, M. & Jouis, C. (2019). Simple and Multiple Correspondence Analysis. 10.13140/RG.2.2.16880.61448.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., . . . Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
Passas, I. (2024). Bibliometric Analysis: The Main Steps. Encyclopedia. 4. 1014-1025. 10.3390/encyclopedia4020065.
Rodríguez S., Rocío & Uribe-Toril, J. & De Pablo, J. (2020). Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy. 97. 104787. 10.1016/j.landusepol.2020.104787.
Shamsuddin, S. & Noriszura, I. & Roslan, N. (2022). A bibliometric analysis of insurance literacy using bibliometrix an R package. AIP Conference Proceedings. 2472. 050023. 10.1063/5.0092721.
Wang, Y. & Zvarych, R.(2024). Artificial Intelligence as Promoting Effect on International Economic Relations. Journal of Intelligence and Knowledge Engineering. 2. 1-5. 10.62517/jike.202404201.
Whiting, M. (2008). The Great Firewall of China: A Critical Analysis. Graduate Research paper, AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio, USA.
Most read articles by the same author(s)