Η συνεισφορά του εκπαιδευτικού υλικού στην επίλυση προβλημάτων πρόσθεσης και αφαίρεσης στο νηπιαγωγείο


Δημοσιευμένα: Ιουλ 1, 2011
Λέξεις-κλειδιά:
μαθηματικές έννοιες επίλυση προβλήματος εποπτικό υλικό εξωτερικές αναπαραστάσεις
Κώστας Ζαχάρος (Kostas Zacharos)
Κωνσταντίνα Παπαδημητρίου (Konstantina Papadimitriou
Περίληψη
Σκοπός της έρευνας που παρουσιάζεται εδώ ήταν να διερευνήσει τις δυνατότητες μαθητών προσχολικής εκπαίδευσης να επιλύουν απλά προβλήματα πρόσθεσης και αφαίρεσης, καθώς και τη συνεισφορά των εξωτερικών αναπαραστάσεων στην επίλυσή τους. Το δείγμα της έρευνας ήταν 12 νήπια ενός δημόσιου νηπιαγωγείου. Στη διαδικασία συλλογής των εμπειρικών δεδομένων χρησιμοποιήθηκαν δυάδες μαθητών που με τη χρήση ζυγαριάς (παλάντζας) και την ισορρόπησή της, δημιουργούν σενάρια που απαιτούν προσθέσεις και αφαιρέσεις μικρών ποσοτήτων. Τα αποτελέσματα της έρευνας δείχνουν ότι η διδασκαλία συνεισφέρει στην επιτυχή αντιμετώπιση των προβλημάτων πρόσθεσης και αφαίρεσης που προτάθηκαν και επιπλέον, η χρήση των αναπαραστάσεων είναι ενισχυτική αυτής της προσπάθειας.
Λεπτομέρειες άρθρου
  • Ενότητα
  • Επιστημονική αρθρογραφία & εκπαιδευτικές δράσεις
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Austin, J.,D., Vollrath, H., J., (1989). Representing, solving, and using Algebraic equations. The Mathematics Teacher, 82: 608- 612.
Böhm, W. (2000). Maria Montessori. Στο J. Houssaye (επιμ.) Δεκαπέντε Παιδαγωγοί. Σταθμοί στην Ιστορία της Παιδαγωγικής Σκέψης (75-98), Μεταίχμιο, Αθήνα.
Boulton-Lewis, G. and Cooper, T.J., Atweh, B., Pillay, H., Wilss, L., and Mutch, S. (1997). Processing Load and the Use of Concrete Representations and Strategies for Solving Linear Equation. Journal of Mathematical Behavior, 16(4), 379-398.
Bruner, J. (1966). Toward a theory of instruction. Cambridge: Harvard University Press.
Cai, J and Lester. K. F. Jr. (2005). Solution representations and pedagogical representations in Chinese and US classrooms. Journal of Mathematical Behavior 24: 221-237.
Clements, D. H. and Sarama, J. (2009). Learning and Teaching Early Math. The Learning Trajectories Approach. Routledge: New York and London.
Dienes, Z. (1964). Building up mathematics. London: Hutchinson Educational.
Dienes, Z. P. (1964). Mathematics in the Primary School. Macmillan and Co., Melbourne.
Diezman, C., and English, L. (2001). Promoting the Use of Diagrams aw Tools for Thinking. In A. A. Cuoco, and F. R. Curcio (eds.), The Roles of Representation in School Mathematics (77-89), Reston, Virginia: N.C.T.M.
Gettman, D. (2003). Montessori. Learning Activities for Under-Fives. Clio Press. Oxford, England.
Goldin, G. A., and Kaput, J. J. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Goldin, and B. Greer (eds.) Theories of mathematical learning, (397-430). Hillsdale, NJ: Erlbaum.
Heiland, H. (2000). Friedrich Fröbel. Στο J. Houssaye (επιμ.) Δεκαπέντε Παιδαγωγοί. Σταθμοί στην Ιστορία της Παιδαγωγικής Σκέψης (75-98), Μεταίχμιο, Αθήνα.
Hudson, T. (1983). Correspondences and numerical differences between sets. Child Development, 54, 84-90.
Hughes, M. (1986). Children and Number: Difficulties in Learning Mathematics. London: Blackwell.
Kamii, C., & Devries, R. (1980). Group Games in Early Education. Implications of Piaget's Theory. National Association for the Education of Young Children, Washington, D.C.
Kamii, C. & De Clark, G. (1985). Young Children Reinvent Arithmetic, Columbia University.
Manches, A., O’Malley, C., Benford, S. (2010). The role of physical representations in solving number problems: A comparison of young children’s use of physical and virtual materials. Computers & Education 54: 622–640.
Martin, T., Lukong, A., & Reaves, R. (2007). The role of manipulatives in arithmetic and geometry. Journal of Educational and Human Development, 1(1).
Mix, K. (2010). Spatial tools for mathematical thought. In K. S. Mix, L. B. Smith & M. Gasser (eds.), The spatial foundations of cognition and language. New York: Oxford University Press.
Nunes, T. and Bryant, P. (1996). Children doing Mathematics. Blackwell publishers.
Poland, M. and Van Oers, B. (2007). Effects of schematizing on mathematical development. European Early Childhood Education Research Journal, 15(2), 269-293.
Resnick, L. B. (1983). A development theory of number understanding. In H. P. Ginsburg (ed.), The development of mathematical thinking (pp. 109-151). New York: Academic Press.
Shane, R. (1999). Making connections: A “number curriculum” for preschoolers. Applied image.
Shiakalli, Μ.Α. and Zacharos, K. (2012). The contribution of external representations in preschool mathematical problem solving. International Journal of Early Years Education (accepted for publication).
Sinclair, A., Siegrist, E., and Sinclair, H. (1983). Young children’s ideas about the written number system. In D. Rogers & J. A. Sloboda (eds.), The acquisition of symbolic skills (pp. 535-541). New York: Plenum.
Steinbring, H. (2005). The Construction of New Mathematical Knowledge in Classroom Interaction. An Epistemological Perspective. Springer, U.S.A.
Steinbring, H. (2006). What Makes a Sign a Mathematical Sing?- An Epistemological Perspective on Mathematical Interaction. Educational Studies in Mathematics, 61(1-2), 163-182.
Sinclair, A., Siegrist, E., and Sinclair, H. (1983). Young children’s ideas about the written number system. In D. Rogers, and J. A. Sloboda (eds.), The acquisition of symbolic skills, 535-541. New York: Plenum.
Uttal, D. H., Scudder, K. V., and DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18(1), 37–54.
Van Oers, B. (1996). Are you sure? Stimulating mathematical thinking during young children's play. European Early Childhood Education Research Journal 4(1), 71 – 87.
Van Oers, B. (1997). On the Narrative Nature of Young Children's Iconic Representations: Some evidence and implications. European Early Childhood Education Research Journal 5(3), 237-245.
Vergnaud, G. (1979), Didactics and acquisition of "multiplicative structures" in secondary schools, In Archenhold W., et al. (eds.), Cognitive Development Research in Science and Mathematics, 190- 201.
Vergnaud, G. (1983), Multiplicative Structures. In Richard Lesh & Marsha Landau (eds.), Acquisition of Mathematics concepts and processes, 127-174, Academic Press.
Vygotsky, L. (1978). Mind in Society. The Development of Higher Psychological Processes. Cambridge, MA: Harvard University Press.
Zacharos, K., Antonopoulos, K., and Ravanis, K. (2011). Activities in mathematics education and teaching interactions. The construction of the measurement of capacity in preschoolers. European Early Childhood Education Research Journal , 19(4), 451-468.
Αντωνόπουλος, Κ., Τσιούνη, Π. και Ζαχάρος, Κ. (2008). Επίλυση προβλημάτων πρόσθεσης σε διαφορετικά πλαίσια συμφραζομένων. Ερευνώντας τον κόσμο του παιδιού, Επιστημονική Περιοδική Έκδοση της Ο.Μ.Ε.Ρ,, τεύχος 8, σελ. 9-24.
Ζαχάρος, Κ. (2007). Οι μαθηματικές έννοιες στην προσχολική εκπαίδευση και η διδασκαλία τους.
Μεταίχμιο, Αθήνα.
Ζαχάρος, Κ., Κόμης, Β., Μπακανδρέα, Ζ., Παπαδημητρίου, Κ., (2007), Τα μαθηματικά στην προσχολική εκπαίδευση. Στρατηγικές προσέγγισης προβλημάτων πρόσθεσης και αφαίρεσης. Νέα Παιδεία, 121, σελ. 78-94.
Τα περισσότερο διαβασμένα άρθρα του ίδιου συγγραφέα(s)