open, digital, online, education, distance education

Teaching Light Refraction Using Algodoo Application


Ελένη Βλιώρα
https://orcid.org/0000-0003-0834-2657
Χαράλαμπος Μουζάκης
https://orcid.org/0000-0001-8744-6627
Μιχάλης Καλογιαννάκης
https://orcid.org/0000-0002-9124-2245
Abstract
Current research has explored new forms of teaching and learning to guide teachers in productive pedagogical innovation. Among these pedagogical innovations, using teaching scenarios in learning has become widely adopted in scholarly science education. One argument in favor of scenario-based teaching is that it promotes student-centered learning activities and motivates students to construct their own understanding of scientific ideas. Ultimately, these pedagogies foster different types of teaching activities which encourage students to conduct a self-directed, interestguided and meaningful learning. The teachers’ important roles in these sophisticated pedagogical capacities are directed towards facilitating, motivating, supporting, and supervising their students in order to become actively engaged with the content and able to learn from that engagement. Research on the use of a diversity of ICT tools in education shows that these technologies have an important role to play in re-defining teaching frameworks in science education. Advanced computer software and interactive applications like Interactive Physics, Modellus, Phed and Algodoo provide learning opportunities that address many of the goals and challenges associated with pedagogical approaches to science education, such as inquiry-based learning, self-guided exploration and problem-solving. Technology-based teaching environment offers interactive computer simulations that enable students to work collaboratively on various science topics. It also provides opportunities to students for problem-solving, debating on controversial issues and making links between new knowledge which is gained through using ICT and prior learning. This paper proposes a framework for designing a teaching scenario that incorporates ICT as a guide for improving conceptual understanding, higher-order thinking skills and collaborative learning in scholarly science education. Based on principles of the scientific didactic model which has been incorporated in the official handbooks, this teaching scenario attempts to seek innovative student-centered approaches with the use of ICT regarding of the concept of light refraction in Greek primary school (10– 12 years old students). The 2D-simulation software Algodoo and an interactive smart board are used to encourage teachers and students to create simulated “scenes” and explore the phenomenon of lights’ refraction. In fact, this software provides a userfriendly and visually attractive interface where students are able to change the initial conditions and observe what happens to the physical properties contained in the animation. For example, Algodoo’s optics scenes give the chance to students to study how light waves behave when they move from one physical material to another.  Based on the assumption that educational scenarios that incorporate ICT have enormous potential to provide opportunities for re-shaping the pedagogy in scholarly science education, this paper describes an operational concept for effective teaching using Algodoo. Drawing on constructivism views of learning, this educational scenario describes a set of teaching activities that integrate computer 2-D simulations in order to help students to revise their alternatives micro-conceptions, to identify questions, to test hypotheses, to make observations, to interpret evidence and to communicate their findings concerning the concept of light refraction. Further investigation and even practical experience are necessary to recognize how to design pedagogical activities that incorporate Algodoo’s dynamic simulations in scholarly science education.
Article Details
  • Section
  • Section 1
Downloads
Download data is not yet available.
Author Biography
Ελένη Βλιώρα

Εκπαιδευτικός ΠΕ70, M.Ed., Ελληνικού Ανοικτού Πανεπιστημίου

References
Adams, W. K., Paulson, A. & Wieman, C. E., (2009). What Levels of Guidance Promote Engaged Exploration with Interactive Simulations? In PERC Proceedings, 2009.
Alt, D. (2018). Science teachers' conceptions of teaching and learning, ICT efficacy, ICT professional development and ICT practices enacted in their classrooms. Teaching and Teacher Education, 73,141-150. ΑΠΣ, (2003). Διαθεματικό Ενιαίο Πλαίσιο Προγραμμάτων (Δ.Ε.Π.Π.Σ.) και Αναλυτικά Προγράμματα Σπουδών (Α.Π.Σ.) Υποχρεωτικής Εκπαίδευσης. Αθήνα: Παιδαγωγικό Ινστιτούτο.
Βλιώρα, Ε., Μουζάκης, Χ., και Καλογιαννάκης, Μ., (2014). Αξιοποίηση του Λογισμικού Algodoo στη Διδασκαλία των Φυσικών Επιστημών στην Πρωτοβάθμια Εκπαίδευση: Μελέτη Περίπτωσης για τη Διδασκαλία της Διάθλασης του Φωτός. Διδασκαλία Φυσικών Επιστημών, Έρευνα και Πράξη, 50-51, 8-22.
Çelik, H., Sarı, U., & Harwanto, U. N. (2015). Developing and evaluating physics teaching material with Algodoo (Phun) in virtual environment: Archimedes’ Principle. International Journal of Innovation in Science and Mathematics Education, 23(4), 178-183.
Chang, Κ. Ε., Chen, Υ. L., Lin, H. Y., & Sung, Y. (2008). Effects of learning support in simulationbased physics learning. Computers & Education, 51(4), 1486-1498.
Clark, D.B., Nelson, B. C, Sengupta, P., & D’Angelo, C. M. (2009). Rethinking science learning through digital games and simulations: genres, examples, and evidence. Proceedings of the National Academies Board on Science Education Workshop on Learning Science: Computer Games, Simulations, and Education. Washington D.C: National Academies Press.
D’Angelo, C. M., Rutstein, D., & Harris, C. J. (2016). Learning with STEM Simulations in the Classroom: Findings and Trends from a Meta-Analysis. Educational Technology, 56(3), 58-61.
da Silva, S. L., da Silva, R. L., Junior, J. T., Gonçalves, E., Viana, E. R., & Wyatt, J. B. (2014). Animation with Algodoo: A simple tool for teaching and learning physics. Exatas Online, (5)2839.
de Jong, Τ., Linn, Μ. C., & Zacharia, Z. C. (2013). Physical and Virtual Laboratories in Science and Engineering Education. Science, 340, 305-308.
Duit, R., Treagust, D., & Widodo, A. (2008). Teaching science for conceptual change: Theory and practice. In S.Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp.629–646).New York: Routledge.
Euler, E., & Gregorcic, B. (2017). Experiencing Variation and Discerning Relevant Aspects Through Playful Inquiry in Algodoo. European Science Education Research Association (ESERA). Ireland.
Ευαγγέλου, Φ. & Κώτσης, Κ. (2014). Συγκριτική μελέτη της επίδρασης πραγματικών και εικονικών πειραμάτων στη μάθηση για το φαινόμενο του βρασμού του νερού σε μαθητές Ε΄ και ΣΤ΄ Δημοτικού Σχολείου. Θέματα Επιστημών και Τεχνολογίας στην Εκπαίδευση, 7(1-2), 5-24.
Girault, I., Peffer, M., Chiocarriello, A., Renken, M., & Otrel-Cass, K. (2016). Computer Simulations on a Multidimensional Continuum: A Definition and Examples. In Simulations as Scaffolds in Science Education (pp. 5-14). Springer International Publishing.
Greca, I. M., Sloane, E., & Arriassecq, I. (2014). Epistemological issues concerning computer simulations in science and their implications for science education. Science and Education, 23, 897–921.
Gregorcic, B., & Bodin, M. (2017). Algodoo: A Tool for Encouraging Creativity in Physics Teaching and Learning. The Physics Teacher, 55(25), 25-28.
Gregorcic, B., & Haglund, J. (2017). Throwing Planets into Orbit: Conceptual Blending with Physics Simulations. European Science Education Research Association (ESERA). Ireland.
Gregorcic, B., Etkina, E., & Planinsic, G. (2017). A New Way of Using the Interactive Whiteboard in a High School Physics Classroom: A Case Study. Research in Science Education, 1-25.
Grgić, M. (2017). Teaching and learning physics with Algodoo-a simple tool for simulations. Doctoral dissertation, Prirodoslovno matematički fakultet, Sveučilište u Splitu.
Θεμελή, Α., Στεφανίδης Γ., Καραγγελής, Κ., Πετροπούλου, Ο. & Ψαρομήλιγκος, Ι. (2017). Διερευνητικές δεξιότητες και μοντέρνες τεχνικές αξιολόγησης της επίδοσης των μαθητών: Ψηφιακό σενάριο διερευνητικής μάθησης «Στατικός Ηλεκτρισμός». Στο Κ. Παπανικολάου, Α. Γόγουλου, Δ. Ζυμπίδης, Α. Λαδιάς, Ι. Τζωρτζάκης, Θ. Μπράτιτσης, Χ. Παναγιωτακόπουλος (επιμ.), Πρακτικά Εργασιών 5ου Πανελλήνιου Συνεδρίου «Ένταξη και Χρήση των ΤΠΕ στην Εκπαιδευτική Διαδικασία», (σ. 49-58). Ανώτατη Σχολή Παιδαγωγικής & Τεχνολογικής Εκπαίδευσης, 21-23 Απριλίου 2017.
Hennessy, S., Wishart, J., Whitelock, D., Deaney, R., Brawn, R., La Velle, L., et al. (2007). Pedagogical approaches for technology-integrated science teaching. Computers & Education, 48(1), 137-152.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education ,1(88), 28-54.
Hu, Χ., Gong, Υ., Lai, C., & Leung, F. (2018). The relationship between ICT and student literacy in mathematics, reading, and science across 44 countries: A multilevel analysis. Computers & Education, 125, 1-13.
Jimoyiannis, A., & Komis, V. (2003). Computer simulations in physics teaching and learning: a case study on students' understanding of trajectory motion. Computers & Education, 36, 183-204.
Kalogiannakis, M., Nirgianaki, G.-M., & Papadakis, St. (2018). Teaching magnetism to preschool children: the effectiveness of picture story reading. Early Childhood Education Journal, 46(5), 535-546.
Kalogiannakis, Μ., Ampartzaki, M., Papadakis, St., & Skaraki, E. (2018). Teaching Natural Science Concepts to Young Children with Mobile Devices and Hands-on Activities. A Case Study. International Journal of Teaching and Case Studies, 9(2), 171-183.
Καλκάνης, Γ. (2000). Οι Τεχνολογίες της Πληροφόρησης στην Εκπαιδευτική Διαδικασία (και) των Φυσικών Επιστημών. Στο Π. Κόκκοτας (επιμ.), Διδακτικές Προσεγγίσεις στις Φυσικές Επιστήμες: Σύγχρονοι προβληματισμοί (σ. 237–278). Αθήνα: Τυπωθήτω.
Kaur, S., & Sharma, S. K. (2017, August). E- Learning Manifesto: A New Vision for Teaching Physics Using E-tools in Higher Education. International Journal of Computer Engineering and Applications, 6(8), 47-51.
Kennedy-Clark, S., Galstaun, V., & Anderson, K. (2011). Using game-based inquiry learning to meet the changing directions of science education. Paper presented at the Australian Society for Computers in Learning in Tertiary Education (ASCILITE) Annual Conference. Κόκκοτας, Π. (2000). Διδακτικές προσεγγίσεις στις φυσικές επιστήμες – Σύγχρονοι προβληματισμοί. Αθήνα: Τυπωθήτω.
Κουλαϊδής, Β. (2007). Σύγχρονες διδακτικές προσεγγίσεις για την ανάπτυξη κριτικής – δημιουργικής σκέψης, Αθήνα: ΟΕΠΕΚ.
McKagan, B., Handley, W., Perkins, K. & Wieman, C. E., (2009). A research-based curriculum for teaching the photoelectric effect. American Journal of Physics, 77(1), 87-94.
Mikropoulos, T. A. & Natsis, A. (2011). Educational Virtual Environments: A Ten Year Review of Empirical Research (1999 – 2009). Computers & Education, 56(3), 769-780.
Μικρόπουλος,Τ. (2002). Προσομοιώσεις και Οπτικοποιήσεις στην Οικοδόμηση της Γνώσης στις Φυσικές Επιστήμες. Στο Π. Μιχαηλίδης. & Α. Μαργετουσάκη (Επιμ.). Πρακτικά του 3ου Πανελληνίου Συνεδρίου: Διδακτική των Φυσικών Επιστημών και Εφαρμογή των Νέων Τεχνολογιών στην Εκπαίδευση. Ρέθυμνο 9-11 Μαΐου 2002, (σσ. 371-376).
National Research Council. 2011. Learning Science Through Computer Games and Simulations. Washington, DC: The National Academies Press.
Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21-47.
Olympiou, G., Zacharia, Z., & de Jong, T. (2013). Making the Invisible Visible: Enhancing Students' Conceptual Understanding by Introducing Representations of Abstract Objects in a Simulation. Instruction Science,41, 575-596.
Osborne, J., & Hennessy, S. (2003). Literature review in science education and the role of ICT: Promise, problems and future directions. Bristol: Nest Future Lab.
Otrel-Cass, K., Girault, I., Renken, M., Chiocarriello, A., & Peffer, M. (2016). Considerations for Integrating Simulations in the Science Classroom. In Simulations as Scaffolds in Science Education (pp. 29-34). Springer International Publishing.
Πλακίτση, Κ. (2008). Διδακτική των φυσικών επιστημών στην προσχολική και στην πρώτη σχολική ηλικία: Σύγχρονες τάσεις και προοπτικές. Αθήνα: Πατάκης.
Podolefsky, N. S., Adams, W. K., Lancaster, K., Perkins, K. K., Singh, C., Sabella, M., & Rebello, S., (2010). Characterizing Complexity of Computer Simulations and Implications for Student Learning, In AIP Conference Proceedings,1289(1), 257.
Psycharis, S. (2017). The Impact of Computational Experiment and Formative Assessment in InquiryBased Teaching and Learning Approach in STEM Education. Science Educational Technology, 25, 316–326.
Renken, M., Peffer, M., Autrel-Cass, K., Girault, I., & Chiocarriello, A. (2016). Simulations as Scaffolds in Science Education. Springer. Riopel, M. & Smyrnaiou Z., (2016). New Developments in Science and Technology, Springer.
Rutten, N., Van Joolingen, W. R., & Van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153. Sarabando, C., Cravino, J. & Soares, A. (2014). Contribution of a computer simulation to students’ learning of the physic concepts of weight and mass. Procedia Technology, 13,112-121.
Smyrnaiou, Z., Moustaki, F., & Kynigos, C. (2016). Inquiry and Meaning Generation in Science While Learning to Learn Together: How Can Digital Media Provide Support? Στο M. Riopel, Z. Smyrnaiou, & (eds.), New Developments in Science and Technology Education, Innovations in Science Education and Technology, (pp. 109-123). Switzerland: Springer International Publishing.
Srinivasan, S., Perez, L. C., Palmer, R. D., Brooks, D. W., Wilson, K., & Fowler, D. (2006). Reality versus simulation. Journal of Science Education and Technology, 15(2), 137-141. Stern, L., Barnea, N. & Shauli, S. (2008). The Effect of a Computerized Simulation on Middle School Students' Understanding of the Kinetic Molecular Theory. Journal of Science Education and Technology, 17/4, 305-3015.
Tarekegn, G. (2009). Can computer simulations substitute real laboratory apparatus?. Latin American Journal of Physics Education, 3(3), 506 – 517.
Tomara, Μ., Τselfes, V. & Gouscos, D. (2017). Instructional strategies to promote conceptual change about force and motion: A review of the literature. Themes in Science & Technology Education, 10(1), 1-16.
Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088.
UNESCO (2002). Εκπαίδευση – Ο Θησαυρός που κρύβει μέσα της, Gutenberg, Αθήνα.
Wang, Τ. L., & Tseng, Y. K. (2018). The Comparative Effectiveness of Physical, Virtual, and VirtualPhysical Manipulatives on Third-Grade Students’ Science Achievement and Conceptual Understanding of Evaporation and Condensation. International Journal of Science and Mathematics Education, 16(2), 203-219.
White, R., & Gunstone, R.F. (2008). The conceptual change approach and the teaching of science. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 619-628). New York: Routledge.
Wibowo, F. C., Hermita, N., Suhandi, A., Supriyatman, Samsudin, A., Rusdiana, D., Darman, D. R., Nahadi, Akbardin, J., & Coştu, B. (2017a). Contribution of Virtual Microscopic Simulation (VMS) to Unveil Students' Conceptual Development and Misconceptions of Physics concepts of Heat Transfer. Turkish Online Journal of Educational Technology, 639-647.
Wibowo, F. C., Suhandi, A., Nahadi, Samsudin, A., Darman, D. R., Suherli, Z., Hasani, A., Leksono, S. M., Hendrayana, A., Suherman, Hidayat, S., Hamdani, D., & Coştu, B. (2017b). Virtual Microscopic Simulation (VMS) to promote students’ conceptual change: A case study of heat transfer. Asia-Pacific Forum on Science Learning and Teaching, 18(2), 1-31.
Wieman, C.E. and Perkins, K.K. (2006). A Powerful Tool for Teaching Science. Nature: Physics, 2(5), 290-292. Zacharia, Z. C., & Michael, M. (2016). Using Physical and Virtual Manipulatives to Improve Primary School Students’ Understanding of Concepts of Electric Circuits. In M. Riopel, & Z. Smyrnaiou (Eds). New Developments in Science and Technology Education, Innovations in Science Education and Technology 23 (pp. 125-140). Switzerland: Springer International Publishing.
Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning & Instruction, 21(3), 317–331.
Zacharia, Ζ. C., & de Jong, T. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives-oriented curriculum. Cognition and instruction,32(2), 101-158.
Most read articles by the same author(s)