Introducing Generative Artificial Intelligence in Early Childhood Education amid Environmental Studies


Published: Dec 24, 2025
Updated: 2025-12-24
Keywords:
Generative Artificial Intelligence, early childhood education, Environmental Studies, Gemini
Καλλιόπη Κανάκη
https://orcid.org/0000-0001-5122-3595
Στέργιος Χατζάκης
Michail Kalogiannakis
https://orcid.org/0000-0002-9124-2245
Abstract

Exploiting Generative Artificial Intelligence in compulsory education is increasingly of interest to educators, researchers and policymakers, as it appears to contribute significantly to improving the learning process and providing personalised learning experiences. Regarding early childhood education, several studies have shown that Generative Artificial Intelligence can effectively improve teaching and learning. Given that early childhood is a critical period for children to discover the connection between Generative Artificial Intelligence applications and basic scientific concepts, we propose the use of Generative Artificial Intelligence applications in the Environmental Studies course in second grade of primary school. In this case study, a teaching intervention is presented in the Environmental Studies course in the second grade of primary school, the design and implementation of which were based on Gemini. The purpose of the study is to investigate the attitude of second graders, as well as their teachers, regarding this teaching intervention. The main research question of this case study is: “What is the attitude of students and teachers in early childhood education regarding the use of Generative Artificial Intelligence applications to support the implementation of the Environmental Studies course?” Students and teachers of the second grade of a primary school in the city of Heraklion, Crete, participated in the research process. The qualitative research methodology was adopted, applying a strong ethical framework. The data collection methods used were observation and personal semi-structured interviews. The research findings are encouraging regarding the utilization of Generative Artificial Intelligence applications to support the implementation of the Environmental Studies course, both from the perspective of students and teachers. Furthermore, the research findings are in line with the existing literature and lead to the conclusion that Generative Artificial Intelligence applications enhance the learning experience in various ways.

Article Details
  • Section
  • Special Theme
Downloads
Download data is not yet available.
References
Ardoin, N. M., & Bowers, A. W. (2020). Early childhood environmental education: A systematic review of the research literature. Educational Research Review, 100353. https://doi.org/10.1016/j.edurev.2020.100353
Aristeidou, M., Herodotou, C., Ballard, H. L., Higgins, L., Johnson, R. F., Miller, A. E., ... & Robinson, L. D. (2021a). How do young community and citizen science volunteers support scientific research on biodiversity? The case of iNaturalist. Diversity, 13(7), 318. https://doi.org/10.3390/d13070318
Aristeidou, M., Herodotou, C., Ballard, H. L., Young, A. N., Miller, A. E., Higgins, L., & Johnson, R. F. (2021b). Exploring the participation of young citizen scientists in scientific research: The case of iNaturalist. Plos one, 16(1), e0245682. https://doi.org/10.1371/journal.pone.0245682
e-nomothesia.gr Τράπεζα Πληροφοριών Νομοθεσίας, (2023). Υπουργική Απόφαση 49986/Δ1/2023 - ΦΕΚ 3023/Β/8-5-2023. Πρόγραμμα Σπουδών για το μάθημα Μελέτη Περιβάλλοντος στις Α', Β', Γ' και Δ' τάξεις Δημοτικού Σχολείου. https://www.e-nomothesia.gr/kat-ekpaideuse/protobathmia-ekpaideuse/ya-49986-d1-2023.html
Bush, A., & Alibakhshi, A. (2025). Bridging the Early Science Gap with Artificial Intelligence: Evaluating Large Language Models as Tools for Early Childhood Science Education. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (pp. 1-6). https://doi.org/10.1145/3706599.3721261
Cohen, L., Manion, L., & Morrison, K. (2013). Research methods in education. Routledge: London, UK. https://doi.org/10.4324/9780203720967
Cruz, T. L., Pinto, P. I. M., & Ferreira, A. H. J. (2021). Environmental education as a tool to improve sustainability and promote global health: Lessons from the COVID-19 to avoid other pandemics. In COVID-19: Paving the Way for a More Sustainable World (pp. 331-347). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-69284-1_17
Feiyue, Z. (2022). Edutainment methods in the learning process: Quickly, fun and satisfying. International Journal of Environment, Engineering and Education, 4(1), 19-26. https://doi.org/10.55151/ijeedu.v4i1.41
Gaube, S., Suresh, H., Raue, M., Merritt, A., Berkowitz, S. J., Lermer, E., ... & Ghassemi, M. (2021). Do as AI say: susceptibility in deployment of clinical decision-aids. NPJ digital medicine, 4(1), 31. https://doi.org/10.1038/s41746-021-00385-9
Gemini Team, Google (2023). Gemini: a family of highly capable multimodal models. https://arxiv.org/pdf/2312.11805
Giannakos, M., Azevedo, R., Brusilovsky, P., Cukurova, M., Dimitriadis, Y., Hernandez-Leo, D., ... & Rienties, B. (2024). The promise and challenges of generative AI in education. Behaviour & Information Technology, 1-27. https://doi.org/10.1080/0144929X.2024.2394886
Horton, N. J., & Kleinman, K. (2015). Using R and RStudio for data management, statistical analysis, and graphics. Chapman and Hall/CRC. https://doi.org/10.1201/b18151
Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. European journal of education, 57(4), 542-570. https://doi.org/10.1111/ejed.12533
Hsu, T. C., Abelson, H., Lao, N., & Chen, S. C. (2021). Is it possible for young students to learn the AI-STEAM application with experiential learning?. Sustainability, 13(19), 11114. https://doi.org/10.3390/su131911114
Imran, M., & Almusharraf, N. (2024). Google Gemini as a next generation AI educational tool: a review of emerging educational technology. Smart Learning Environments, 11(1), 22. https://doi.org/10.1186/s40561-024-00310-z
Joseph, O. B., & Uzondu, N. C. (2024). Integrating AI and Machine Learning in STEM education: Challenges and opportunities. Computer Science & IT Research Journal, 5(8), 1732-1750. https://doi.org/10.51594/csitrj.v5i8.1379
Kalogiannakis, M., Ampartzaki, M., Papadakis, S., & Skaraki, E. (2018). Teaching natural science concepts to young children with mobile devices and hands-on activities. A case study. International Journal of Teaching and Case Studies, 9(2), 171-183. https://doi.org/10.1504/ijtcs.2018.090965
Καλογιαννάκης, Μ., Γούπος, Θ., Ιμβριώτη, Δ., Ιωακειμίδου, Β., & Ριζάκη, Α. (2022). Οδηγός Εκπαιδευτικού. Στο πλαίσιο της Πράξης «Αναβάθμιση των Προγραμμάτων Σπουδών και Δημιουργία Εκπαιδευτικού Υλικού Πρωτοβάθμιας και Δευτεροβάθμιας Εκπαίδευσης». Αθήνα: Ινστιτούτο Εκπαιδευτικής Πολιτικής.
Καλογιαννάκης, Μ., Γούπος, Θ., Ιμβριώτη, Δ., Ιωακειμίδου, Β., & Ριζάκη, Α. (2022). Πρόγραμμα Σπουδών Μελέτης Περιβάλλοντος. Στο πλαίσιο της Πράξης «Αναβάθμιση των Προγραμμάτων Σπουδών και Δημιουργία Εκπαιδευτικού Υλικού Πρωτοβάθμιας και Δευτεροβάθμιας Εκπαίδευσης». Αθήνα: Ινστιτούτο Εκπαιδευτικής Πολιτικής.
Kanaki, K., & Kalogiannakis, M. (2023). Sample design challenges: an educational research paradigm. International Journal of Technology Enhanced Learning, 15(3), 266-285. https://doi.org/10.1504/ijtel.2023.10055808
Κανάκη, Κ., & Καλογιαννάκης, Μ. (2022). Επιστημονικός γραμματισμός και Περιβαλλοντική Εκπαίδευση στην πρώτη σχολική ηλικία. Στο: «Μάθηση μέσω Πρακτικών των Φυσικών Επιστημών και της Μηχανικής» του ηλεκτρονικού περιοδικού Διδασκαλία των Φυσικών Επιστημών: Έρευνα & Πράξη - Science Education: Research & Praxis, Θεματικό τεύχος 84 (σελ. 43-64). ISSN: 1792-3166. Διαθέσιμο στο https://serp.ecedu.uoi.gr/wp-content/uploads/2023/07/84.pdf
Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., & Huber, P. (2016). Artificial intelligence and computer science in education: From kindergarten to university. In 2016 IEEE frontiers in education conference (FIE) (pp. 1-9). IEEE. https://doi.org/10.1109/fie.2016.7757570
Kewalramani, S., Palaiologou, I., Dardanou, M., Allen, K.-A., & Phillipson, S. (2021). Using robotic toys in early childhood education to support children’s social and emotional competencies. Australasian Journal of Early Childhood, 46(4), 355-369. https://doi.org/10.1177/18369391211056668
Kong, S. C., Cheung, W. M. Y., & Zhang, G. (2021). Evaluation of an artificial intelligence literacy course for university students with diverse study backgrounds. Computers & Education: Artificial Intelligence, 2, Article 100026. https://doi.org/10.1016/j.caeai.2021.100026
Kong, S. C., Cheung, W. M. Y., & Zhang, G. (2022). Evaluating artificial intelligence literacy courses for fostering conceptual learning, literacy and empowerment in university students: Refocusing to conceptual building. Computers in Human Behavior Reports, 7, Article 100223. https://doi.org/10.1016/j.chbr.2022.100223
Leung, W. M. V. (2023). STEM education in early years: Challenges and opportunities in changing teachers’ pedagogical strategies. Education Sciences, 13(5), 490. https://doi.org/10.3390/educsci13050490
Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1-16). https://doi.org/10.1145/3313831.3376727
Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S. (2021a). AI literacy: Definition, teaching, evaluation and ethical issues. Proceedings of the Association for Information Science and Technology, 58(1), 504–509. https://doi.org/10.1002/pra2.487
Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021b). Conceptualizing AI literacy: An exploratory review. Computers & Education: Artificial Intelligence, 2, Article 100041. https://doi.org/10.1016/j.caeai.2021.100041
Noroozi, O., Soleimani, S., Farrokhnia, M., & Banihashem, S. K. (2024). Generative AI in Education: Pedagogical, Theoretical, and Methodological Perspectives. International Journal of Technology in Education, 7(3), 373-385. https://doi.org/10.46328/ijte.845
Nyaaba, M. (2023). Comparing Human and AI’s (GPT-4 and Gemini) Understanding of the Nature of Science. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4661602
Patrick, H., Mantzicopoulos, P. (2015). Young Children’s Motivation for Learning Science. In: Cabe Trundle, K., Saçkes, M. (eds) Research in Early Childhood Science Education. Springer, Dordrecht. (pp. 7-34) https://doi.org/10.1007/978-94-017-9505-0_2
Petousi, V., & Sifaki, E. (2020). Contextualising harm in the framework of research misconduct. Findings from discourse analysis of scientific publications. International Journal of Sustainable Development, 23(3-4), 149-174. https://doi.org/10.1504/ijsd.2020.115206
Ravanis, K. (2022). Research trends and development perspectives in Early Childhood Science Education: an overview. Education Sciences, 12(7), 456. https://doi.org/10.3390/educsci12070456
Saeidnia, H. R. (2023). Welcome to the Gemini era: Google DeepMind and the information industry. Library Hi Tech News. https://doi.org/10.1108/lhtn-12-2023-0214
Sakulkueakulsuk, B., Witoon, S., Ngarmkajornwiwat, P., Pataranutaporn, P., Surareungchai, W., Pataranutaporn, P., & Subsoontorn, P. (2018). Kids making AI: Integrating machine learning, gamification, and social context in STEM education. In 2018 IEEE international conference on teaching, assessment, and learning for engineering (TALE) (pp. 1005-1010). IEEE. https://doi.org/10.1109/tale.2018.8615249
Sarmiento-Campos, N. V., Lázaro-Guillermo, J. C., Silvera-Alarcón, E. N., Cuellar-Quispe, S., Huamán-Romaní, Y. L., Apaza, O. A., & Sorkheh, A. (2022). A look at Vygotsky’s sociocultural theory (SCT): The effectiveness of scaffolding method on EFL learners’ speaking achievement. Education Research International, 2022(1), 3514892. https://doi.org/10.1155/2022/3514892
Slavin, R. E. (2022). Cooperative learning in elementary schools. In Contemporary Issues in Primary Education (pp. 102-111). Routledge. https://doi.org/10.4324/9781315619781-2
Songer, N. B., & Gotwals, A. W. (2012). Guiding explanation construction by children at the entry points of learning progressions. Journal of Research in Science Teaching, 49(2), 141-165.
Sperling, K., Stenberg, C. J., McGrath, C., Åkerfeldt, A., Heintz, F., & Stenliden, L. (2024). In search of artificial intelligence (AI) literacy in teacher education: A scoping review. Computers and Education Open, 100169. https://doi.org/10.1016/j.caeo.2024.100169
Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., ... & Teller, A. (2022). Artificial intelligence and life in 2030: the one hundred year study on artificial intelligence. https://arxiv.org/abs/2211.06318
Su, J., Ng, D. T. K., & Chu, S. K. W. (2023). Artificial intelligence (AI) literacy in early childhood education: The challenges and opportunities. Computers and Education: Artificial Intelligence, 4, 100124. https://doi.org/10.1016/j.caeai.2023.100124
Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37. https://doi.org/10.2478/jagi-2019-0002
Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., … Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), Article 100179. https://doi.org/10.1016/j.xinn.2021.100179
Zhang, X., Li, S., Hauer, B., Shi, N., & Kondrak, G. (2023). Don't trust ChatGPT when your question is not in English: a study of multilingual abilities and types of LLMs. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (pp. 7915–7927). https://doi.org/10.18653/v1/2023.emnlp-main.491
Most read articles by the same author(s)