Mathematical Profile Test: adaptation & standardization in Greek


Published: Feb 5, 2022
Keywords:
assessment dyscalculia mathematical difficulties mathematical skills
Ioannis Karagiannakis
https://orcid.org/0000-0002-2839-4123
Petros Roussos
https://orcid.org/0000-0003-1465-2117
Fotini Polychroni
https://orcid.org/0000-0002-1550-3271
Abstract

The present study presents the adaptation and standardization of the Mathematical Profile Test (MathProTest – Karagiannakis & Nöel, 2020) in Greek, a theoretically - driven assessment tool covering a wide range of important mathematical skills. It is an autonomous online battery which can be administered individually or in groups. The MathPro test includes 18 tasks which assess numerical skills related either to specific cognitive domain (core number), or to general cognitive domains (visual-spatial, memory, or reasoning). This test was administered to a sample of 2371 primary school children (Grades 1-6) which was recruited from seven geographical prefectures of Greece following quota sampling. According omega coefficient, the MathPro Test showed satisfactory internal consistency. Pearson’s coefficient between test-retest confirmed the repeated measures reliability. Finally, significant and stable correlation with teachers’ evaluation on mathematical performance across all grades were found with children with difficulties in mathematics to be performed significantly lower according the results of the multiple one sample t-test. This all suggests that the MathPro test is a reliable tool  sensitive  in mathematical difficulties that can be used both in conducting large scale research and assessing in detail the mathematical profile of children with or without mathematical learning difficulties – dyscalculia for diagnosis purposes and focused intervention based on the individuals  strengths and weaknesses in mathematics.

Article Details
  • Section
  • RESEARCH PAPERS
Downloads
Download data is not yet available.
References
Andersson, U., & Ostergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22, 701–714. https://doi. org/10.1016/j.lindif.2012.05.004
Ashkenazi, S., Black, J. M., Abrams, D. A., Hoeft, F., & Menon, V. (2013). Neurobiological underpinnings of math and reading learning disabilities. Journal of Learning Disabilities, 46(6), 549-569. https://doi.org /10.1177/0022219413483174
Baccaglini-Frank, A. (2021). To tell a story, you need a protagonist: how dynamic interactive mediators can fulfil this role and foster explorative participation to mathematical discourse. Educational Studies in Mathematics, 106(291-312). https://doi.org/10.1007/s10649-020-10009-w
Baccaglini-Frank, A., Karagiannakis, G., Pini, C., Termine, C., & Girelli, L. (2020). Identifying mathematical learning profiles of children between 6 and 12: the Italian standardization of the MathPro battery. RicercAzione, 12,167-199. https://doi.org/10.32076/RA12109
Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35, 657–670. https://doi.org/10.1016/j.ridd .2013.12.010
Butterworth, B. (1999). The mathematical brain. Macmillan.
Cheyette, S. J., & Piantadosi, S. T. (2019). A primarily serial, foveal accumulator underlies approximate numerical estimation. Proceedings of the National Academy of Sciences, 116, 17729-17734. https://doi.org/10.1 073/pnas.1819956116
Dowker, A. (2005). Individual differences in arithmetic: Implications for Psychology, Neuroscience and Education. Psychology Press.
Farrell, R., Falzon, R. & Karagiannakis, G. (2020). The MathPro battery: A tool for the early identification of difficulties in learning mathematics. Early Leaving form Education and Training-The way forward, MEDE, Malta. https://epale.ec.europa.eu/sites/default/files/_early_leaving_from_education_and_training-the_way_forward.pdf
Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2007). Learning disabilities: From identification to intervention. Guilford Press.
Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. https://doi.org/10.1177/00222194040370010201
Geary, D. C. (2005). Role of Cognitive Theory in the Study of Learning Disability in Mathematics. Journal of Learning Disabilities, 38(4), 305–307. https://doi.org/10.1177/00222194050380040401
Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642-648. https://doi.org/10.1037/a0026218
Gersten, R., Clarke, B., Jordan, N. C., Newman-Gonchar, R., Haymond, K., & Wilkins, C. (2012). Universal Screening in Mathematics for the Primary Grades: Beginnings of a Research Base. Exceptional Children, 78(4), 423-445. https://doi.org/10.1177/001440291207800403
Gilmore, C., Cragg, L., Hogan, G., & Inglis, M. (2016). Congruency effects in dot comparison tasks: Convex hull is more important than dot area. Journal of Cognitive Psychology, 28, 923-931. https://doi.org/10.1080/ 20445911.2016.1221828
Huijsmans, Μ.D.E., Kleemans, M.A.J., Ven, S.H.G. van der., Kroesbergen, E.H. (2020). The relevance of subtyping children with mathematical learning disabilities, Research in Developmental Disabilities, 14, 103704. https://doi.org/10.1016/j.ridd.2020.103704
IBM Corp. Released. (2017). IBM SPSS Statistics for Windows, Version 25.0. IBM Corp.
Jordan, N.C., Hanich, L.B., Kaplan, D., 2003. Arithmetic fact mastery in young children: a longitudinal investigation. J. Exp. Child Psychol. 85 (2), 103–119. https://doi.org/10.1016/S0022-0965(03)00032-8
Καραγιαννάκης, Γ. (2018). Μαθησιακές Δυσκολίες στα Μαθηματικά: Γεφυρώνοντας τη θεωρία με την πράξη. Στο Φ. Βλάχος (Επιμ.), Εγκέφαλος, Μάθηση και Ειδική Αγωγή (σελ. 275-306). Gutenberg.
Καραγιαννάκης, Γ. (2014). Ανάπτυξη δοκιμασίας Διερεύνησης Δυσκολιών στα Μαθηματικά (ανέκδοτη διδακτορική διατριβή). Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. https://doi.org/10.12681/eadd /44165
Karagiannakis, G., & Noël., M.-P. (2020). Mathematical Profile Test: A preliminary evaluation of an online assessment for mathematics skills of children in Grades 1-6. Behavioral Sciences, 10, 126. https://doi.org/10.3390/bs10080126
Karagiannakis, G. N., Baccaglini-Frank, A. E., & Roussos, P. (2017). Detecting strengths and weaknesses in learning mathematics through a model classifying mathematical skills. Australian Journal of Learning Difficulties, 21(2), 115-141. https://doi.org/10.1080/19404158.2017.1289963
Karagiannakis, G., & Baccaglini-Frank, A. (2014). The DeDiMa battery: a tool for identifying students’ mathematical learning profiles. Health Psychology Review, 2(4), 291-297. https://doi.org/10.5114/hpr.2 014.46329
Karagiannakis, G., & Cooreman, A. (2014). Focused intervention based on a classification MLD model. In S. Chinn (Ed.), The Routledge International Handbook of Dyscalculia and Mathematical Learning Difficulties (pp. 265-276). Routledge.
Karagiannakis, G., Baccaglini-Frank, A., & Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in human neuroscience, 8, 57. https://doi.org/10.3389/fnhum.2014.00057
Καρούση, Τ-Ε., & Καραγιαννάκης Γ. (2020). Διερεύνηση μαθηματικών δεξιοτήτων μαθητών δημοτικού με ειδικές μαθησιακές δυσκολίες. Στα πρακτικά του 7ου Συνεδρίου ΑΣΠΑΙΤΕ (σελ. 89-101).
Koumoula, A., Tsironi, V., Stamouli, V., Bardani, I., Siapati, S., Annik, G., Kafantaris, I., Charalambidou, I., Dellatolas, G., von Aster, M. (2004). An epidemiological study of number processing and mental calculation in Greek schoolchildren. Journal of Learning Disabilities, 37, 377–388. https://doi.org/10.1177/0022 2194040370050201
Låg, T., Bauger, L., Lindberg, M., Friborg, O. (2014).The role of numeracy and intelligence in health-risk estimation and medical data interpretation. Journal of Behavioral Decision Making, 27(2), 95-108. https://doi.org/10.1002/bdm.1788
Lewis, K. E., & Fisher, M. B. (2016). Taking stock of 40 years of research on mathematical learning disability: Methodological issues and future directions. Journal for Research in Mathematics Education, 47, 338–371. https://doi.org/10.5951/jresematheduc.47.4.0338
Lusardi, A., Tufano, P. (2015). Debt literacy, financial experiences, and overindebtedness. Journal of Pension Economics and Finance, 14(4), 332-368. https://doi.org/10.1017/S1474747215000232
Murphy, M. M., Mazzocco, M. M. M., Hanich, L. B. & Early, M. C.(2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40(5), 458–478. https://doi.org/10.1177/00222194070400050901
OECD (2019), PISA 2018 Assessment and Analytical Framework, PISA, OECD Publishing, Paris.
https://doi.org /10.1787/7fda7869-en
Parsons, S. & Bynner, J. (2005). Does numeracy matter more? National research and development centre for adult literacy and numeracy. http://eprints.ioe.ac.uk/4758/1/parsons2006does.pdf.
Peters, E., Tompkins, MK., Knoll, M., Ardoin, SP., Shoots-Reinhard, B., Meara, AS. (2019). Despite high objective numeracy, lower numeric confidence relates to worse financial and medical outcomes. Proceedings of the National Academy Sciences, 116(39), 19386-19391. https://doi.org/10.1073/pnas.1903126116
Rolison, JJ., Morsanyi, K., Peters, E.(2020) Understanding Health Risk Comprehension: The Role of Math Anxiety, Subjective Numeracy, and Objective Numeracy. Medical Decision Making, 40(2), 222-234. https://doi.org/ 10.1177/0272989X20904725
Szücs, D. (2016). Subtypes and co-morbidity in mathematical learning disabilities: Multi-dimensional study of verbal and visual memory processes is key to understanding. Progress in Brain Research, 227, 277–304. https://doi.org/10.1016/bs.pbr.2016.04.027
von Aster, M. G. & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868–873. https://doi.org/10.1111/j.1469-8749.2007.00868.x
Most read articles by the same author(s)